# Werris Creek Coal Community Consultative Committee

# Twenty Sixth Meeting of the CommitteeTraining Room, Werris Creek Coal9:30am Thursday 28th February 2013MINUTES

Werris Creek Coal (WCC) Community Consultative Committee (CCC) met at 9:30am and had a pit tour of the mine site prior to the meeting. The feedback from the site tour was positive with the CCC inspecting the rehabilitation, top dump, eastern lookout in pit, coal stockpiles and train load out facility and the coal crushing plant.

#### 1. Record of Attendance:

Present: Gae Swain (Independent Chairperson); Noel Taylor (Community Representative); Lindsay Bridge (Community Representative); Jill Coleman (Community Representative); Geoff Dunn (Community Representative); Col Stewart (Liverpool Plains Shire Council - Councilor); Ron Van Katwyk (Liverpool Plains Shire Council – Director Environmental Services); Peter Easey (WCC Operations Manager) and Andrew Wright (WCC Environmental Officer and Minute Taker).

Apologies: Roslyn Marr (Community Representative).

#### 2. Declaration of Pecuniary or Other Interests

Noel Taylor declared that his son works for Werris Creek Coal. Gae Swain declared that her son works for Orica but not at the Werris Creek Coal site.

#### 3. New Matters for Discussion under General Business

Noel Taylor raised a complaint made by a Quipolly resident regarding issues with Quipolly Creek water quality and water level. Lindsay Bridge wanted to discuss the perceived increase in dust emissions.

#### 4. Matters Arising

#### a) Actions from Previous Meeting

None.

b) Other Matters Arising

None.

#### 5. Minutes of Previous Meeting

Minutes of the previous meeting on the 22<sup>nd</sup> November 2012 were accepted as true and accurate representation of business conducted on that day.

Moved: Col Stewart. Seconded: Lindsay Bridge. Motion carried.

#### 6. Environmental Monitoring Report: November, December 2012 and January 2013

**Meteorology** – The wind was predominately south easterly over the period. Heavy rainfall was recorded over the period with a total of 358.6mm.

**Air Quality** – The November 2012 and January 2013 PM10 dust levels were generally above the annual average, however did not exceed the daily limit of 50 µg/m<sup>3</sup>. Otherwise the PM10 and TSP monthly averages for November, December and January were all below the relevant annual Air Quality criteria. All monthly dust deposition gauge results were within the Air Quality criteria of 4.0g/m<sup>2</sup>/month. The only anomalous result was for "Villamagna" which recorded an excessive 13.1g/m<sup>2</sup>/month in November 2012 which wasn't representative of WCC. There were four dust complaints received during this period. All four complaints occurred during January 2013 with the prevailing weather conditions being very hot and dry due to an extended heat wave from central Australia affecting regional air quality as well as the smoke and ash from the Coonabarabran Fire. **Noise** – There were no noise exceedances or noise complaints for the period.

**Blasting** – There were 22 blasts during the period and all were in compliance. There was one blast complaint during the period on the 22<sup>nd</sup> November 2012 with the complainant alleging that the blast smelt sulfurous however the investigation could not identify the source of the sulfurous

odour or in fact whether it originated from the blast. **Groundwater** – Groundwater levels have continued to fall due to below average rainfall over 2012. Mining continues not to impact on groundwater aquifers. It is anticipated that the heavy rainfall during period will result in the groundwater levels rising. There was one groundwater complaint during the period. A CCC member passed on a complaint from a Quipolly resident alleging that their bore water level had dropped and has become contaminated with "rotten egg" gas. The Operations Manager and Environmental Officer met with the complainant. WCC have subsequently taken creek and groundwater samples at the property as well as upstream and downstream to compare against ANZECC (2000) water quality guidelines for Livestock Watering and Irrigation.

**Surface Water** – All onsite and offsite water quality is consistent with longer term averages and within the site water management plan trigger values.

**Surface Water Discharges** – There were five wet weather dirty water discharges during the period and all were within compliance.

**Complaints** – There were seven complaints received during the period. In total there were four complaints related to dust; one complaint related to blasting (odour), one complaint related to vegetation clearing and one complaint for groundwater impacts. There were seven different complainants during the period with four complaints from Werris Creek residents; two complaints from Quipolly residents and one from a government agency.

Motion moved to accept the Environmental Monitoring Report for November, December 2012 and January 2013.

Moved: Noel Taylor. Seconded: Jill Coleman. Motion Carried.

#### 7. General Business

#### a. Community Enhancement Fund (CEF) Update

Ron Van Katwyk updated the committee on the status of the two current projects related to the CEF. The new elevator for the Werris Creek Railway Museum had been ordered; Council had submitted the Development Application and was awaiting NSW Heritage Office approval with installation of the elevator expected during 2013. Council had submitted a Development Application for a new skate park to be located midway between the two hotels in Single Street, Werris Creek. Community feedback has been received on the skate park proposal and once the issues raised by ARTC are address, construction should commence in 2013.

#### b. Community Enhancement Fund (CEF) Annual Review

In accordance with the annual review requirements of the CEF, the CCC members reviewed the schedule of the projects to be funded by the CEF. Only one amendment was suggested by the CCC which was to have the proposed \$30,000 scheduled for 2014 be unallocated at this stage. Previously the \$30,000 was allocated to Playground Equipment in Bell Park (Quirindi) in 2014 however as the playground equipment has already been purchased and installed, these funds should be put towards another appropriate project when identified by Liverpool Shire Plains Council and agreed to by the CCC and Whitehaven Coal.

Motion moved to suggest to Liverpool Shire Plains Council that the proposed \$30,000 scheduled for 2014 be unallocated until another appropriate project is identified.

#### Moved: Geoff Dunn. Seconded: Noel Taylor. Motion Carried.

#### c. Perceived Increase in Dust Emissions

Lindsay Bridge discussed what he believes is an emerging dust issue from WCC relating to the expansion of the mine. Andrew Wright acknowledged his concerns and said that while the mine was undergoing a period of transition with the relocation of the Mine Infrastructure Area and relocation of the access road to allow for the expansion of the western dump; the majority of key dust generating activities are unchanged because the level of production has not changed and are not affected by the other changes.

#### d. Quipolly Creek Water Quality Complaint

The committee discussed the complaint made by a Quipolly resident that was initially about alleged groundwater odour and aquifer decline, but recently expanded to Quipolly Creek water level decline and water quality/contamination issues. Andrew Wright outlined the response to date including testing the creek and groundwater at the property and found that the water quality complied with the ANZECC (2000) water quality guidelines for Livestock Watering and Irrigation. The committee then went on a tour of the licensed discharge points on the mine site including the drainage flowpath from the mine to Quipolly Creek, observing no water quality issues along the way. Half the committee stopped at the complainant's property and was shown algae on the stream surface that is alleged to have only recently occurred. WCC has committed to additional water quality testing to help identify the cause of the algae locally in the creek.

#### Meeting Closed 12:00pm.

#### Next Meeting scheduled for Thursday 30<sup>th</sup> May 2013.

| Copy to:       |                          |
|----------------|--------------------------|
| Gae Swain      | Independent Chairperson  |
| Jill Coleman   | Community Representative |
| Noel Taylor    | Community Representative |
| Lindsay Bridge | Community Representative |
| Roslyn Marr    | Community Representative |
| Geoff Dunn     | Community Representative |
| Ron Van Katwyk | LPSC                     |
| Cr Col Stewart | LPSC                     |

DoPl

DRE

FPA

Cr Col Stewart Stephen O'Donoghue Simon Lund Lindsay Fulloon Peter Easey Danny Young Andrew Wright

Werris Creek Coal Whitehaven Coal Werris Creek Coal



# WERRIS CREEK COAL PTY LTD

# **QUARTERLY ENVIRONMENTAL MONITORING**

# REPORT

# November and December 2012, January 2013

This Environmental Monitoring Report covers the period 1<sup>st</sup> November 2012 to 31<sup>st</sup> January 2013 for the Werris Creek No.2 Coal Mine Community Consultative Committee.

The report includes environmental monitoring results from the on-site Weather Station, Air Quality, Noise, Blasting, Surface Water, Groundwater and Discharge Water Quality together with any community complaints received and general details on site environmental matters.

**Note:** Monitoring results with any non compliance of monitoring criteria are highlighted in yellow.

# CONTENTS

| 1.1 WEATHER STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0   | METEOROLOGY                              | .3  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|-----|
| 2.0 AIR QUALITY 3   2.1 HVAS (PM10) and TEOM (PM10). 3   2.1.1 Monitoring Data Results 4   2.1.2 Discussion - Compliance / Non Compliance 4   2.2 WERRIS CREEK MINE DEPOSITED DUST. 4   2.2 WERRIS CREEK MINE DEPOSITED DUST. 4   2.2 WERRIS CREEK MINE DEPOSITION DUST. 4   2.2.1 Monitoring Data Results 4   2.2 Discussion - Compliance / Non Compliance 5   2.3 QUIRINDI TRAIN DUST DEPOSITION 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   4.0 BLAST 7   4.1 BLAST 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   4.1 BLAST 8                                                                                                          | 1.1   | WEATHER STATION                          | . 3 |
| 2.1 HVAS (PM10) and TEOM (PM10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0   | AIR QUALITY                              | .3  |
| 2.1.1 Monitoring Data Results 4   2.1.2 Discussion - Compliance / Non Compliance 4   2.2 WERRIS CREEK MINE DEPOSITED DUST 4   2.2.1 Monitoring Data Results 4   2.2.2 Discussion - Compliance / Non Compliance 5   2.3 QUIRINDI TRAIN DUST DEPOSITION 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.1 BLAST 7   4.1 BLAST 7   4.1 BLAST 7   4.2 BLAST 8   5.1.1 Monitoring Data Results 8   5.1 GROUND WATER 8   5.1 GROUND WATER 9   5.2 SURFACE WATER 9                                                                                                                                                                         | 2.1   | HVAS (PM10) and TEOM (PM10).             | . 3 |
| 2.1.2 Discussion - Compliance / Non Compliance 4   2.2 WERRIS CREEK MINE DEPOSITED DUST 4   2.2.1 Monitoring Data Results 4   2.2.2 Discussion - Compliance / Non Compliance 5   2.3 QUIRINDI TRAIN DUST DEPOSITION 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.1.2 Discussion - Compliance / Non Compliance 8   5.1 GROUND WATER 8   5.1 GROUND WATER 9   5.1.2 Discussion - Compliance / Non Compliance 9                                                                                                 | 2.1.1 | Monitoring Data Results                  | . 4 |
| 2.2 WERRIS CREEK MINE DEPOSITED DUST. 4   2.2.1 Monitoring Data Results 4   2.2.2 Discussion - Compliance / Non Compliance 5   2.3 QUIRINDI TRAIN DUST DEPOSITION 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   3.3 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.2 BLAST COMPLAINTS 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1 GROUND WATER 9   5.1 Josicussion - Compliance / Non Compliance 9   5.2 SURF                                                                                                                                          | 2.1.2 | Discussion - Compliance / Non Compliance | . 4 |
| 22.1 Monitoring Data Results 4   22.2 Discussion - Compliance / Non Compliance 5   2.3 QUIRINDI TRAIN DUST DEPOSITION 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.0 DERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   5.0 WATER 8   5.1 GROUND WATER 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2 SURF                                                                                                                                          | 2.2   | WERRIS CREEK MINE DEPOSITED DUST         | . 4 |
| 2.2.2 Discussion - Compliance / Non Compliance 5   2.3 QUIRINDI TRAIN DUST DEPOSITION 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.                                                                                                                           | 2.2.1 | Monitoring Data Results                  | . 4 |
| 2.3 QUIRINDI TRAIN DUST DEPOSITION 5   2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST 7   4.1 BLAST 7   4.1 BLAST COMPLAINTS 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1.1 Monitoring Data Results 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results                                                                                                                                                 | 2.2.2 | Discussion - Compliance / Non Compliance | . 5 |
| 2.3.1 Monitoring Data Results 5   2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.1.2 Discussion - Compliance / Non Compliance 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1 GROUND WATER 9   5.1.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results 10   5.3                                                                                                                                   | 2.3   | QUIRINDI TRAIN DUST DEPOSITION           | . 5 |
| 2.3.2 Discussion - Compliance / Non Compliance 5   2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.1.2 Discussion - Compliance / Non Compliance 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1.1 Monitoring Data Results 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2.3 SURFACE WATER 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.3.1 Monitoring Data Results 10   5.3 SURFACE WATER DISCHARGES 10   5.3.1 <td>2.3.1</td> <td>Monitoring Data Results</td> <td>. 5</td>                                                                 | 2.3.1 | Monitoring Data Results                  | . 5 |
| 2.4 AIR QUALITY COMPLAINTS 5   3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.2 BLAST COMPLAINTS 8   5.0 WATER 8   5.1 GROUND WATER. 8   5.1.2 Discussion - Compliance / Non Compliance 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2 SURFACE WATER 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 10   5.3.1 Monitoring Data Results 10   5.3.1 Monitoring Data Results 10   5.3.1                                                                                                                                      | 2.3.2 | Discussion - Compliance / Non Compliance | . 5 |
| 3.0 NOISE 6   3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.2 BLAST COMPLAINTS 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1 GROUND WATER 9   5.1.1 Monitoring Data Results 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2.3 SURFACE WATER 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 10   5.3 SURFACE WATER DISCHARGES 10   5.3.1 Monitoring Data Results 10   5.3.2 Discussion - Compliance / Non Compliance 10<                                                                                                                                                         | 2.4   | AIR QUALITY COMPLAINTS                   | . 5 |
| 3.1 OPERATIONAL NOISE 6   3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.2 BLAST COMPLAINTS 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1 GROUND WATER 9   5.1.1 Monitoring Data Results 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2.3 SURFACE WATER 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 10   5.3 SURFACE WATER DISCHARGES 10   5.3.1 Monitoring Data Results 10   5.3.2 Discussion - Compliance / Non Compliance 10   5.3.1 Monitoring Data Results 10   5.3.2                                                                                                                                           | 3.0   | NOISE                                    | .6  |
| 3.1.1 Monitoring Data Results 6   3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.2 BLAST COMPLAINTS 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1.1 Monitoring Data Results 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results 9   5.2.2 SURFACE WATER 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 10   5.3 SURFACE WATER DISCHARGES 10   5.3.1 Monitoring Data Results 10   5.3.2 Discussion - Compliance / Non Compliance 10   5.3.3 WATER COMPLAINTS 10                                                                                                                    | 3.1   | OPERATIONAL NOISE                        | . 6 |
| 3.1.2 Discussion - Compliance / Non Compliance 7   3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.2 BLAST COMPLAINTS 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1.1 Monitoring Data Results 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 10   5.3 SURFACE WATER DISCHARGES 10   5.3.1 Monitoring Data Results 10   5.3.2 Discussion - Compliance / Non Compliance 10   5.3.1 Monitoring Data Results 10   5.3.2 Discussion - Compliance / Non Compliance 10   5.3.3 WATER COMPLAINTS <t< th=""><td>3.1.1</td><td>Monitoring Data Results</td><td>. 6</td></t<>                | 3.1.1 | Monitoring Data Results                  | . 6 |
| 3.2 NOISE COMPLAINTS 7   4.0 BLAST 7   4.1 BLAST MONITORING 8   4.1.1 Monitoring Data Results 8   4.1.2 Discussion - Compliance / Non Compliance 8   4.2 BLAST COMPLAINTS 8   5.0 WATER 8   5.1 GROUND WATER 8   5.1.1 Monitoring Data Results 9   5.1.2 Discussion - Compliance / Non Compliance 9   5.2 SURFACE WATER 9   5.2.1 Monitoring Data Results 9   5.2.2 Discussion - Compliance / Non Compliance 9   5.2.2 Discussion - Compliance / Non Compliance 10   5.3 SURFACE WATER DISCHARGES 10   5.3.1 Monitoring Data Results 10   5.3.2 Discussion - Compliance / Non Compliance 10   5.3.2 Discussion - Compliance / Non Compliance 10   5.3.1 Monitoring Data Results 10   5.3.2 Discussion - Compliance / Non Compliance 10   5.3 Discussion - Compliance / Non Compliance <td>3.1.2</td> <td>Discussion - Compliance / Non Compliance</td> <td>. 7</td> | 3.1.2 | Discussion - Compliance / Non Compliance | . 7 |
| 4.0BLAST74.1BLAST MONITORING84.1.1Monitoring Data Results84.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.2.3SURFACE WATER95.2.4Monitoring Data Results95.2.5Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3URFACE WATER DISCHARGES105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                          | 3.2   | NOISE COMPLAINTS                         | . 7 |
| 4.1BLAST MONITORING84.1.1Monitoring Data Results84.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS105.3WATER COMPLAINTS105.3GENERAL12                                                                                                                                                                                                                                                                                                              | 4.0   | BLAST                                    | .7  |
| 4.1.1Monitoring Data Results84.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                | 4.1   | BLAST MONITORING                         | . 8 |
| 4.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3MATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                  | 4.1.1 | Monitoring Data Results                  | . 8 |
| 4.2BLAST COMPLAINTS8 <b>5.0WATER</b> 85.1GROUND WATER85.1.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                        | 4.1.2 | Discussion - Compliance / Non Compliance | . 8 |
| 5.0WATER85.1GROUND WATER85.1.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.3SURFACE WATER DISCHARGES105.3.4Monitoring Data Results105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.2   | BLAST COMPLAINTS                         | . 8 |
| 5.1GROUND WATER85.1.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3SURFACE / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0   | WATER                                    | .8  |
| 5.1.1Monitoring Data Results95.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.1   | GROUND WATER                             | . 8 |
| 5.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1.1 | Monitoring Data Results                  | . 9 |
| 5.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1.2 | Discussion - Compliance / Non Compliance | . 9 |
| 5.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2   | SURFACE WATER                            | . 9 |
| 5.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.2.1 | Monitoring Data Results                  | . 9 |
| 5.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.2.2 | Discussion - Compliance / Non Compliance | 10  |
| 5.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3   | SURFACE WATER DISCHARGES                 | 10  |
| 5.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.3.1 | Monitoring Data Results                  | 10  |
| 5.3 WATER COMPLAINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.3.2 | Discussion - Compliance / Non Compliance | 10  |
| 6.0   COMPLAINTS SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3   | WATER COMPLAINTS                         | 10  |
| 7.0 GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0   |                                          | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.0   | GENERAL                                  | 12  |

# **APPENDICES**

| Appendix 1 | .Dust Monitoring Results - PM10 and PM2.5 |
|------------|-------------------------------------------|
| Appendix 2 | .Dust Monitoring Results – Deposited Dust |
| Appendix 3 | .Train Dust Deposition Monitoring         |
| Appendix 4 | Noise Monitoring Results                  |
| Appendix 5 | Blasting Monitoring Results               |
| Appendix 6 | .Groundwater Monitoring Results           |
| Appendix 7 | Surface Water Monitoring Results          |
| Appendix 8 | Discharge Monitoring Results              |

# 1.0 METEOROLOGY

#### 1.1 WEATHER STATION

Werris Creek Coal (WCC) collects meteorological data from the onsite weather station located on the top level of the overburden emplacement and from the continuous noise monitoring units located at Quipolly and Werris Creek. The following table summarises temperature, inversion and rainfall data for the last three months and wind data is presented below in windroses.

| Month         | Q<br>Te | uipol<br>mp (' | lly<br>°C) | Wei<br>Te | rris (<br>mp ( | Creek<br><sup>o</sup> C) | <b>W(</b><br>(° | CC T<br>C) 1( | emp<br>)m | Lapse<br>(°C/1 | Rate<br>00m) |        | Rainfa | all (m | m)      |
|---------------|---------|----------------|------------|-----------|----------------|--------------------------|-----------------|---------------|-----------|----------------|--------------|--------|--------|--------|---------|
|               | Min     | Avg            | Max        | Min       | Avg            | Max                      | Min             | Avg           | Max       | Avg            | 90%          | Onsite | Quip   | WC     | Annual* |
| November 2012 | 5.8     | 22.2           | 37.9       | 11.0      | 22.7           | 37.7                     | 10.3            | 22.4          | 37.5      | +0.4           | +5.5         | 43.8   | 38.2   | 53.4   | 259.0   |
| December 2012 | 6.8     | 23.9           | 38.9       | 11.4      | 24.3           | 38.2                     | 13.1            | 23.3          | 35.6      | -3.0           | +5.1         | 141.8  | 84.4   | 65.2   | 400.8   |
| January 2013  | 14.2    | 26.0           | 40.7       | 15.7      | 26.6           | 40.6                     | 15.1            | 26.3          | 40.0      | -0.1           | +5.4         | 173.0  | 144.0  | 102.0  | 573.8   |

\* Annual cumulative total since April 2012 to March 2013 from a composite data set based on the onsite Weather Station at WCC.



The onsite weather station was fully available during the period.

# 2.0 AIR QUALITY

## 2.1 HVAS (PM10) and TEOM (PM10)

WCC operates five High Volume Air Sampler (HVAS) monitors to measure particulate matter less than 10 micron (PM10) and total suspended particulate (TSP) matter at the four sites. HVAS sampling is scheduled for 24 hours every 6 days in accordance with Environment Protection Authority (EPA) guidelines and results are reported as micro grams per cubic metre ( $\mu$ g/m<sup>3</sup>) of air sampled. In addition, WCC operates a Tapered Element Oscillating Microbalance (TEOM) monitor in Werris Creek measuring real time PM10 and PM2.5 (particulate matter less than 2.5 micron) dust levels. From January 2013, the PM10 HVAS at "Eurunderee" was relocated to "Escott" to continue monitoring dust levels representative to the west of WCC due to the power being disconnected to "Eurunderee".

PM2.5 – TEOM92 "Werris Creek" PM10 – TEOM92 "Werris Creek" PM10 – HVP20 "Tonsley Park" PM10 – HVP4 "Eurunderee" or HVP1 "Escott" PM10 – HVP20 "Glenara" PM10 – HVP98 "Kyooma" TSP – HVT98 "Kyooma"

#### 2.1.1 Monitoring Data Results

The monthly average results for the last three months are provided in the table below; however see HVAS/TEOM monitoring data under **Appendix 1** for individual results.

| Monitor Location                          | November<br>2012(µg/m <sup>3</sup> ) | December<br>2012 (µg/m <sup>3</sup> ) | January<br>2013 (μg/m <sup>3</sup> ) | 2012-2013<br>Average (μg/m <sup>3</sup> ) | Annual Criteria<br>(µg/m <sup>3</sup> ) |
|-------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------|
| PM2.5 – TEOM92<br>"Werris Creek"          | 6.8                                  | 6.5                                   | 7.8                                  | 8.1                                       | 8                                       |
| PM10 – TEOM92<br>"Werris Creek"           | 14.3                                 | 13.1                                  | 14.2                                 | 13.7                                      | 30                                      |
| PM10 – HVP20 "Tonsley<br>Park"            | 24.1                                 | 9.2                                   | 21.0                                 | 14.4                                      | 30                                      |
| PM10 - HVP4/HVP1<br>"Eurunderee"/"Escott" | 21.7                                 | 7.4                                   | 11.9                                 | 13.0                                      | 30                                      |
| PM10 – HVP20<br>"Glenara"                 | 18.5                                 | 13.8                                  | 16.2                                 | 13.7                                      | 30                                      |
| PM10 – HVP98<br>"Kyooma"                  | 15.3                                 | 7.4                                   | 10.3                                 | 13.0                                      | 30                                      |
| TSP – HVT98 "Kyooma"                      | 24.0                                 | 13.0                                  | 19.7                                 | 26.2                                      | 90                                      |

#### 2.1.2 Discussion - Compliance / Non Compliance

The November 2012 and January 2013 PM10 dust levels were generally above the annual average, however did not exceed the daily limit of 50  $\mu$ g/m<sup>3</sup>. January 2013 experienced an extended heat wave from central Australia and the Coonabarabran Fire which affected air quality. Otherwise the PM10 and TSP monthly averages for November, December and January were all below the relevant annual Air Quality criteria. The PM2.5 annual average is only slightly above the annual criteria; however PM2.5 dust monitoring only commenced in September 2012 in Werris Creek and therefore requires more time for the annual average to reflect the 12 month period. For November, December and January, the PM2.5 dust levels measured were not elevated above the annual criteria of 8  $\mu$ g/m<sup>3</sup>.

#### 2.2 WERRIS CREEK MINE DEPOSITED DUST

Deposited dust monitoring measures particulate matter greater than 30 micron in size that readily settles out of the air related to visual impact. Dust deposition is monitored at 20 locations around WCC. Sampling is scheduled monthly in accordance with EPA guidelines and results are reported as grams per metre squared per month ( $g/m^2/month$ ).

#### 2.2.1 Monitoring Data Results

The results for the last three months are provided in the table below; however **Appendix 2** has more information on Deposited Dust Monitoring Results.

| Monitor<br>Location | November<br>2012<br>(g/m <sup>2</sup> /month) | December<br>2012<br>(g/m <sup>2</sup> /month) | January 2013<br>(g/m <sup>2</sup> /month) | 2012-2013<br>Average<br>(g/m <sup>2</sup> /month) | AQGHGMP<br>Criteria<br>(g/m <sup>2</sup> /month) |
|---------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| "Cintra"            | 1.7                                           | 1.4                                           | *3.3                                      | 1.5                                               | 4.0                                              |
| "Railway View"      | 1.2                                           | 1.6                                           | 3.2                                       | 1.4                                               | 4.0                                              |
| "Tonsley Park"      | 1.0                                           | 1.2                                           | 3.3                                       | 1.0                                               | 4.0                                              |
| "Plain View"        | 0.7                                           | 1.0                                           | 2.0                                       | 1.8                                               | 4.0                                              |
| "Marengo"           | 0.5                                           | 0.6                                           | 1.6                                       | 0.8                                               | 4.0                                              |
| "Mountain View"     | 0.1                                           | 3.2                                           | 3.0                                       | 1.5                                               | 4.0                                              |
| "Glenara"           | 0.7                                           | *3.7                                          | 1.2                                       | 1.9                                               | 4.0                                              |
| "Hazeldene"         | 0.6                                           | *3.6                                          | 1.8                                       | 0.8                                               | 4.0                                              |
| "Woodlands"         | 1.8                                           | *2.5                                          | 2.7                                       | 1.6                                               | 4.0                                              |
| "Talavera"          | 0.6                                           | 0.9                                           | 1.4                                       | 0.8                                               | 4.0                                              |
| "Kyooma"            | *0.7                                          | 1.0                                           | 1.9                                       | 1.1                                               | 4.0                                              |
| "Greenslopes"       | 0.8                                           | 1.0                                           | 1.5                                       | 0.9                                               | 4.0                                              |
| Werris Creek South  | *0.7                                          | 0.5                                           | 0.9                                       | 0.6                                               | 4.0                                              |
| Werris Creek Centre | *2.5                                          | *1.1                                          | 1.2                                       | 0.8                                               | 4.0                                              |
| "Westfall"          | 1.1                                           | 1.5                                           | 2.7                                       | 1.3                                               | 4.0                                              |
| West Street         | 1.1                                           | 1.1                                           | 0.6                                       | 0.9                                               | 4.0                                              |
| "Escott"            | 0.6                                           | 0.8                                           | 1.3                                       | 0.7                                               | 4.0                                              |
| "Eurunderee"        | 0.8                                           | 1.2                                           | 1.6                                       | 0.9                                               | 4.0                                              |

| Monitor<br>Location | November<br>2012<br>(g/m <sup>2</sup> /month) | December<br>2012<br>(g/m <sup>2</sup> /month) | January 2013<br>(g/m <sup>2</sup> /month) | 2012-2013<br>Average<br>(g/m <sup>2</sup> /month) | AQGHGMP<br>Criteria<br>(g/m <sup>2</sup> /month) |
|---------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| 8 Kurrara St        | 1.1                                           | 1.2                                           | 1.4                                       | 1.1                                               | 4.0                                              |
|                     |                                               |                                               |                                           |                                                   |                                                  |

\* - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e. bird droppings and insects) and is excluded from the average; c - indicates sample is contaminated from a Non-Werris Creek Coal dust source and is not counted in the average

#### 2.2.2 Discussion - Compliance / Non Compliance

All monthly dust deposition gauge results were within the Air Quality criteria of 4.0g/m<sup>2</sup>/month. The only anomalous result was for "Villamagna" which recorded an excessive 13.1g/m<sup>2</sup>/month in November 2012. Given that "Villamagna" is greater than 5km from WCC and the dust level was substantially higher than any of the dust deposition gauge results along the Paynes Road, Quipolly which are closer to the mine; the dust level measure is not representative of WCC contribution and was excluded from the average.

#### 2.3 QUIRINDI TRAIN DUST DEPOSITION

#### 2.3.1 Monitoring Data Results

| Monitor  | Novembe                 | r 2012 | December                | r 2012 | January                 | 2013   | Annual                    |
|----------|-------------------------|--------|-------------------------|--------|-------------------------|--------|---------------------------|
| Location | g/m <sup>2</sup> /month | % Coal | g/m <sup>2</sup> /month | % Coal | g/m <sup>2</sup> /month | % Coal | (g/m <sup>2</sup> /month) |
| DDW30    | 1.2                     | 10     | 1.0                     | 15     | 1.8                     | 10     | 1.2                       |
| DDW20    | 1.5                     | 15     | 1.4                     | 5      | 1.3                     | 10     | 1.0                       |
| DDW13    | 0.8                     | 15     | 1.7                     | 60     | 1.5                     | 10     | 1.0                       |
|          |                         |        | Trai                    | n Line |                         |        |                           |
| DDE13    | 0.9                     | 15     | 2.4                     | 15     | 1.3                     | 15     | 1.0                       |
| DDE20    | 2.4                     | 5      | 1.4                     | 20     | 1.0                     | 10     | 1.3                       |
| DDE30    | 1.5                     | 10     | 3.6                     | 5      | 2.5                     | 5      | 1.7                       |

The results for the last three months are provided in the table below; however **Appendix 3** has more information on the Train Dust Monitoring Results.

#### 2.3.2 Discussion - Compliance / Non Compliance

Overall the dust fall out levels adjacent to the train line are low (well below the impact assessment criteria nominated by the EPA of 4.0 g/m<sup>2</sup>/month) and comparable to the levels monitored around WCC.

#### 2.4 AIR QUALITY COMPLAINTS

There were four dust complaints received during this period. All four complaints occurred during January 2013 with the prevailing weather conditions being very hot and dry due to an extended heat wave from central Australia affecting regional air quality as well as the smoke and ash from the Coonabarabran Fire.

Three of the complaints were in relation to the perceived high dust levels that the complainants believed were due to WCC's activities. Under these dry and hot conditions, all dust sources generate higher than average dust emissions which includes WCC coal mine. During this period, WCC's principle dust control method of water carts used on average 2ML/day to suppress dust across the mine site. While the January 2013 air quality conditions are dustier than normal, real time monitoring in Werris Creek found dust levels to be below levels determined by the Department of Planning and Infrastructure and Environment Protection Authority as causing environmental or health impacts. While there is some daily variability between the Werris Creek and Tamworth PM10 dust levels, on average the Werris Creek PM10 levels are lower than that measured in Tamworth. Assuming that Tamworth PM10 levels are representative of regional dust levels and are not impacted by WCC mining operations; then the results indicate that Werris Creek is not being adversely impacted by WCC mining operations.

The other dust complaint was made by a Quipolly resident on the 9<sup>th</sup> January 2013 at 10am. The complaint coincided with a sudden increase in wind speed from 7m/s to over 13m/s at 10am with wind speed dropping back to 8m/s by 10:30am with the wind direction towards Quipolly. All five water carts were operating at the time of the complaint applying a total 2.4ML of water for dust suppression on the day of the complaint.

Specific action taken in relation to each of these complaints is outlined in Section 6.

## 3.0 NOISE

#### 3.1 OPERATIONAL NOISE

Monthly attended noise monitoring is undertaken representative of the following 17 properties from 13 monitoring points below. Attended noise monitoring was undertaken twice for either 60 minutes at privately owned properties or 15 minutes at properties with private agreements; representative of the day period and the evening/night period.

- A "Rosehill" R5;
- o B1 "Almawille" (private agreement) R8;
- o B1 83 Wadwells Lane R7;
- o B2 "Mountain View" R22;
- o B2 "Gedhurst" R9;
- o C "Meadholme" (private agreement) R10;
- o C "Glenara" (private agreement) R11;
- o D "Hazeldene" R24;
- o E "Railway Cottage" R12;
- o F "Talavera" R96;
- o G R97;
- H "Kyooma" (private agreement) R98;
- I Kurrara St, Werris Creek;
- o J Coronation Ave, Werris Creek;
- o K "Tonsley Park" (private agreement) R20;
- o K "Alco Park" (private agreement) R21; and
- o L R103.

#### 3.1.1 Monitoring Data Results

The WCC operations only noise level (not ambient noise) results for the last three months are outlined below; however see Monthly Noise Monitoring Reports under **Appendix 4** for more detail.

|    | Location                    | Day dB(A)             | Criteria dB(A)        | Evening/Night               | Criteria dB(A)        |
|----|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
|    | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| Α  | "Rosehill" R5               | Inaudible#            | 35                    | Inaudible                   | 35                    |
| B1 | West Quipolly R7, R8*       | Barely audible        | 37                    | 37                          | 37                    |
| B2 | West Quipolly R9 & R22      | 25                    | 37/36 <sup>1</sup>    | Inaudible                   | 37/36 <sup>1</sup>    |
| С  | Central Quipolly R10*, R11* | 30                    | 39                    | 32                          | 39                    |
| D  | "Hazeldene" R24             | 30                    | 37                    | 28                          | 37                    |
| Е  | "Railway Cottage" R12       | Inaudible             | 38                    | 30                          | 38                    |
| F  | "Talavera" R96              | <25                   | 38                    | Inaudible                   | 37                    |
| G  | R97                         | 22                    | 35                    | 22                          | 35                    |
| Η  | "Kyooma" R98*               | 25                    | 36                    | <20                         | 36                    |
| Ι  | Kurrara St, WC              | Inaudible             | 35                    | Inaudible                   | 35                    |
| J  | Coronation Ave, WC          | Inaudible             | 35                    | Inaudible                   | 35                    |
| Κ  | South St, WC R20*, R21*     | 26                    | 39                    | Inaudible#                  | 37                    |
| L  | West St, WC R103            | 26#                   | 35                    | Inaudible                   | 35                    |
|    | Doil Snur                   |                       | Not Monitored         |                             | 35                    |
|    | Kan Spur                    |                       | 35                    |                             |                       |

Thursday 29<sup>th</sup> November 2012

WC - Werris Creek; \* - Private agreement in place with resident; Yellow Bold - Elevated noise; # Adverse weather with wind >3m/s, temperature inversions >+12°C/100m or >2m/s and >0°C/100m; 1 - R22 criteria is 36 dB(A) L<sub>eq 15min</sub> while R9 is 37 dB(A) L<sub>eq 15min</sub>

#### Tuesday/Wednesday 17<sup>th</sup>/18<sup>th</sup> December 2012

|    | Location                    | Day dB(A)             | Criteria dB(A)        | <b>Evening/Night</b>        | Criteria dB(A)        |  |  |  |
|----|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|--|--|--|
|    | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |  |  |  |
| Α  | "Rosehill" R5               | Inaudible#            | 35                    | Inaudible#                  | 35                    |  |  |  |
| B1 | West Quipolly R7, R8*       | Inaudible#            | 37                    | <25#                        | 37                    |  |  |  |
| B2 | West Quipolly R9 & R22      | Inaudible             | 37/36 <sup>1</sup>    | Inaudible#                  | 37/36 <sup>1</sup>    |  |  |  |
| С  | Central Quipolly R10*, R11* | 30#                   | 39                    | Inaudible#                  | 39                    |  |  |  |
| D  | "Hazeldene" R24             | Inaudible             | 37                    | Inaudible#                  | 37                    |  |  |  |
| Е  | "Railway Cottage" R12       | Inaudible             | 38                    | <25#                        | 38                    |  |  |  |
| F  | "Talavera" R96              | <20#                  | 38                    | <30#                        | 37                    |  |  |  |
| G  | R97                         | <25                   | 35                    | <25#                        | 35                    |  |  |  |
| Н  | "Kyooma" R98*               | 32#                   | 36                    | <30#                        | 36                    |  |  |  |
| Ι  | Kurrara St, WC              | Inaudible#            | 35                    | <25#                        | 35                    |  |  |  |
| J  | Coronation Ave, WC          | Inaudible             | 35                    | <30#                        | 35                    |  |  |  |
| K  | South St, WC R20*, R21*     | Inaudible#            | 39                    | <25#                        | 37                    |  |  |  |
| L  | West St, WC R103            | Inaudible#            | 35                    | Inaudible#                  | 35                    |  |  |  |
|    | Doil Spun                   |                       | Not Monitored         |                             | 35                    |  |  |  |
|    | Kan Spur                    |                       | Not Monitored         |                             |                       |  |  |  |

 $\begin{array}{l} WC-Werris\ Creek;\ *\ -\ Private\ agreement\ in\ place\ with\ resident;\ Yellow\ Bold-Elevated\ noise;\ \#\ Adverse\ weather\ with\ wind\ >3m/s,\ temperature\ inversions\ >+12^{o}C/100m\ or\ >2m/s\ and\ >0^{o}C/100m;\ 1-R22\ criteria\ is\ 36\ dB(A)\ L_{eq\ 15min}\ while\ R9\ is\ 37\ dB(A)\ L_{eq\ 15min}\ begin{tabular}{l}$ 

#### Wednesday 16<sup>th</sup> January 2013

|    | Location                    | Day dB(A)             | Criteria dB(A)     | Evening/Night                          | Criteria dB(A)     |
|----|-----------------------------|-----------------------|--------------------|----------------------------------------|--------------------|
|    |                             | L <sub>eq</sub> 15min | Leg 15min          | $(\mathbf{A}) \mathbf{L}_{eq} 15 \min$ | Leg 15min          |
| Α  | "Rosehill" R5               | Inaudible             | 35                 | 28#                                    | 35                 |
| B1 | West Quipolly (R7, R8*)     | Inaudible             | 37                 | 35#                                    | 37                 |
| B2 | West Quipolly (R9 & R22)    | Inaudible             | 37/36 <sup>1</sup> | <mark>37#</mark>                       | 37/36 <sup>1</sup> |
| С  | Central Quipolly(R10*,R11*) | <25                   | 39                 | 34#                                    | 39                 |
| D  | "Hazeldene" R24             | 25                    | 37                 | 32#                                    | 37                 |
| Е  | "Railway Cottage" R12       | Inaudible             | 38                 | 28#                                    | 38                 |
| F  | "Talavera" R96              | 20                    | 38                 | 30#                                    | 37                 |
| G  | R97                         | 17                    | 35                 | 32#                                    | 35                 |
| Н  | "Kyooma" R98*               | 19                    | 36                 | 32#                                    | 36                 |
| Ι  | Kurrara St, WC              | Inaudible             | 35                 | Inaudible#                             | 35                 |
| J  | Coronation Ave, WC          | Inaudible             | 35                 | Inaudible#                             | 35                 |
| K  | South St, WC (R20*, R21*)   | Inaudible             | 39                 | Inaudible#                             | 37                 |
| L  | West St, WC (R103)          | Inaudible             | 35                 | Inaudible#                             | 35                 |
|    | Doil Sour                   |                       | Not Monitored      |                                        | 35                 |
|    | Kan Spur                    |                       | Not Monitored      |                                        | 35                 |

WC – Werris Creek; \* - Private agreement in place with resident; Yellow Bold – Elevated noise; # Adverse weather with wind >3m/s, temperature inversions >+12°C/100m or >2m/s and >0°C/100m; 1 – R22 criteria is 36 dB(A) L<sub>eq 15min</sub> while R9 is 37 dB(A) L<sub>eq 15min</sub>

#### 3.1.2 Discussion - Compliance / Non Compliance

There were no noise exceedances during November, December 2012 and January 2013. There was an elevated noise level of 37dBA measured for Mountain View (R22 – Location B2) above the criteria of 36dBA but was measured under noise enhancing weather conditions (wind speed >3m/s) and therefore is not comparable to the noise criteria.

#### 3.2 NOISE COMPLAINTS

There were no noise complaints during the period.

## 4.0 BLAST

Blast monitoring was undertaken at "Glenara", "Talavera", "Werris Creek" and "Tonsley Park" during the period. Compliance limits for blasting overpressure is 115dBL (and up to 120dBL for only 5% of blasts) and vibration is 5mm/s (and up to 10mm/s for only 5% of blasts). During the period a total of 22 blasts were fired by the blasting contractor, Orica Mining Services.

#### 4.1 BLAST MONITORING

#### 4.1.1 Monitoring Data Results

The summary tables of blasting results over the last three months are provided below; however see the blasting results database under **Appendix 5** for more detail.

| November 2012          | "Glenara" |       | "Tonsley Park" |       | Werris Creek |       | "Talavera" |       |
|------------------------|-----------|-------|----------------|-------|--------------|-------|------------|-------|
| November 2012          | mm/s      | dB(L) | mm/s           | dB(L) | mm/s         | dB(L) | mm/s       | dB(L) |
| Monthly Average        | 0.14      | 103.0 | 0.64           | 105.3 | 0.32         | 101.8 | 0.23       | 103.9 |
| Monthly Maximum        | 0.22      | 106.0 | 0.93           | 115.0 | 0.62         | 111.0 | 0.43       | 107.0 |
| Annual Average         | 0.22      | 105.5 | 0.90           | 101.7 | 0.39         | 100.2 | 0.23       | 105.3 |
| Criteria               | 5         | 115   | 5              | 115   | 5            | 115   | 5          | 115   |
| % >115dB(L) or 5mm/s   | 0%        | 0%    | 0%             | 0%    | 0%           | 0%    | 0%         | 0%    |
| # Triggered this Month | 6         | 5/9   | ,              | 7/9   | 6            | /9    | 8          | /9    |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| December 2012          | "Gle | nara" | "Tonsl | ey Park" | Werris | Creek | "Tala | vera" |  |
|------------------------|------|-------|--------|----------|--------|-------|-------|-------|--|
| December 2012          | mm/s | dB(L) | mm/s   | dB(L)    | mm/s   | dB(L) | mm/s  | dB(L) |  |
| Monthly Average        | 0.21 | 103.0 | 0.66   | 100.5    | 0.44   | 87.8  | 0.53  | 102.4 |  |
| Monthly Maximum        | 0.33 | 104.0 | 0.87   | 103.0    | 0.61   | 97.5  | 0.66  | 106.3 |  |
| Annual Average         | 0.22 | 105.1 | 0.87   | 101.5    | 0.39   | 98.6  | 0.27  | 104.9 |  |
| Criteria               | 5    | 115   | 5      | 115      | 5      | 115   | 5     | 115   |  |
| % >115dB(L) or 5mm/s   | 0%   | 0%    | 0%     | 0%       | 0%     | 0%    | 0%    | 0%    |  |
| # Triggered this Month | 4    | /6    | 4      | 4/6      | 3/     | /6    | 5/6   |       |  |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| January 2012           | "Gle | nara" | "Tonsl | ey Park" | Werris | Creek | "Tala | vera" |  |
|------------------------|------|-------|--------|----------|--------|-------|-------|-------|--|
| January 2015           | mm/s | dB(L) | mm/s   | dB(L)    | mm/s   | dB(L) | mm/s  | dB(L) |  |
| Monthly Average        | 0.16 | 101.0 | 0.97   | 104.3    | 0.55   | 99.7  | 0.39  | 109.4 |  |
| Monthly Maximum        | 0.21 | 108.0 | 1.15   | 106.0    | 0.87   | 101.5 | 0.41  | 110.8 |  |
| Annual Average         | 0.21 | 105.1 | 0.88   | 101.8    | 0.41   | 98.8  | 0.29  | 105.4 |  |
| Criteria               | 5    | 115   | 5      | 115      | 5      | 115   | 5     | 115   |  |
| % >115dB(L) or 5mm/s   | 0%   | 0%    | 0%     | 0%       | 0%     | 0%    | 0%    | 0%    |  |
| # Triggered this Month | 2    | 2/7   |        | 2/7      | 4,     | /7    | 2/7   |       |  |
|                        |      |       |        |          |        |       |       |       |  |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

#### 4.1.2 Discussion - Compliance / Non Compliance

All blasts over the period complied with maximum license limits (120d(B)L and 10mm/s) with no blast overpressure levels above 115dB(L) or vibration levels over 5mm/s for the three month period.

#### 4.2 BLAST COMPLAINTS

There was one blast complaint during the period. The complainant alleged that the WCC blast on the 22<sup>nd</sup> November 2012 smelt sulfurous and knew that the mine had just blasted as they could see a dust cloud from the mine blowing towards Werris Creek. The investigation into complaint confirmed that there was a southerly breeze at the time of the blast, however the wind direction was not towards Werris Creek. The investigation could not identify the source of the sulfurous odour or in fact whether it originated from the blast as there is not any product or item in a blast that would give a sulfurous odour and that the complainants residence was 5km away from the blast. Specific actions taken in relation to this complaint are outlined in **Section 6**.

# 5.0 WATER

The groundwater monitoring program monitors groundwater levels bi-monthly and groundwater quality six monthly. Surface water monitoring is undertaken quarterly. There were five surface water discharge events during the period.

#### 5.1 GROUND WATER

Groundwater monitoring is undertaken to monitor if there are any impacts on groundwater quality and levels as a result of the mining operations. WCC monitors 35 groundwater bores and piezometers in the key aquifers surrounding the mine including Werris Basalt (near to WCC and further afield) and Quipolly Creek Alluvium. Bi-monthly groundwater level monitoring was completed on 16<sup>th</sup> and 21<sup>st</sup> November 2012 and 24<sup>th</sup> and 25<sup>th</sup> January 2013. No groundwater quality monitoring was undertaken during the period.

#### 5.1.1 Monitoring Data Results

A summary of groundwater monitoring results is provided below with the laboratory reports provided in **Appendix 6**.

| Sito  | Lev   | vel  | Le    | vel  | Commonts                                   |
|-------|-------|------|-------|------|--------------------------------------------|
| Sile  | Nove  | mber | Jan   | uary | Comments                                   |
|       |       |      |       | Werr | ie Basalt – Near WCC Mine                  |
| MW1   | 53.26 | -1%  | 53.82 | -1%  |                                            |
| MW2   | 25.68 | -2%  | 26.14 | -2%  |                                            |
| MW3   | 15.59 | -1%  | 15.68 | -1%  |                                            |
| MW4B  | 10.88 | -2%  | 11.12 | -2%  |                                            |
| MW5   | 8.75  | -4%  | 8.76  | 0%   |                                            |
| MW5B  | 8.30  | -4%  | 8.32  | 0%   |                                            |
| MW6   | 12.23 | -1%  | 12.41 | -1%  |                                            |
| P1    | 30.51 | -3%  | 31.95 | -2%  |                                            |
|       |       |      |       |      | Werrie Basalt                              |
| MW8   | 14.27 | 0%   | 15.05 | -5%  |                                            |
| MW9   | 15.43 | -3%  | 15.54 | -1%  |                                            |
| MW10  | 17.96 | 1%   | 17.60 | 2%   |                                            |
| MW14  | 16.75 | -2%  | 17.05 | -2%  |                                            |
| MW14B | 16.52 | -2%  | 16.82 | -2%  |                                            |
| MW17B | 9.98  | -4%  | 11.89 | -16% | Windmill in use at the time of measurement |
| MW19A | 5.85  | -1%  | 6.07  | -4%  |                                            |
| MW20  | 19.19 | -1%  | 19.41 | -1%  |                                            |
| MW27  | 40.52 | -3%  | 40.75 | -1%  |                                            |
|       |       |      |       |      | Quipolly Alluvium                          |
| MW12  | 8.55  | -5%  | 8.61  | -1%  |                                            |
| MW13  | 4.74  | -4%  | 4.98  | -5%  |                                            |
| MW13B | 3.28  | -2%  | 3.49  | -6%  |                                            |
| MW13D | 4.86  | 9%   | 5.06  | -4%  |                                            |
| MW15  | 4.26  | -5%  | 4.47  | -5%  |                                            |
| MW16  | 4.81  | -7%  | 5.05  | -5%  |                                            |
| MW17A | 3.87  | -6%  | 4.15  | -7%  |                                            |
| MW18A | 3.55  | -5%  | 3.90  | -10% |                                            |
| MW21A | 6.70  | -4%  | 7.09  | -6%  |                                            |
| MW22A | 4.79  | -5%  | 5.18  | -8%  |                                            |
| MW22B | 5.02  | -8%  | 5.30  | -5%  |                                            |
| MW23A | 3.70  | 5%   | 3.85  | -4%  |                                            |
| MW23B | 4.21  | 13%  | 4.37  | -4%  |                                            |
| MW28A | 10.07 | -8%  | 11.20 | -6%  |                                            |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; Dip – is distance in meters from top of bore to groundwater surface; Red – Greater than 15% change/potential compliance issue; Orange – Change decrease; Green – change increase or no change.

#### 5.1.2 Discussion - Compliance / Non Compliance

The low rainfall for much of 2012 had resulted in groundwater levels to decline. Current groundwater levels are just below long term average levels since monitoring commenced in 2005 indicating that mining is not impacting on the groundwater aquifers. The January 2012 levels were measured the day before the heavy rainfall over the Australia Day long weekend and do not reflect the subsequent anticipated rise in groundwater levels.

#### 5.2 SURFACE WATER

Surface water monitoring is undertaken at key dirty and void water dams to monitor for potential contamination issues due to mining while the water is still onsite. Quarterly surface water monitoring was undertaken on 29<sup>th</sup> November 2012.

#### 5.2.1 Monitoring Data Results

Summary of surface water quality monitoring results is provided below with the laboratory reports provided in **Appendix 7**.

| Site | pН   | EC   | TSS | O&G | Change                                                                |
|------|------|------|-----|-----|-----------------------------------------------------------------------|
|      |      |      |     |     | ONSITE                                                                |
| SB2  | 9.08 | 589  | 33  | <5  | pH increased 0.33, EC increased 36, TSS increased 24, O&G no change.  |
| SB9  | 8.36 | 418  | 53  | <5  | pH no change, EC increased 95, TSS increased 46, O&G no change.       |
| SB10 | 8.31 | 486  | 22  | <5  | pH increased 0.29, EC increased 186, TSS decreased 20, O&G no change. |
|      |      |      |     |     | OFFSITE                                                               |
| QCU  | 8.03 | 467  | 18  | <5  | pH increased 0.04, EC decreased 5, TSS decreased 38, O&G no change.   |
| QCD  | 7.98 | 815  | <5  | <5  | pH decreased 0.13, EC decreased 42, TSS decreased 25, O&G no change.  |
| WCU  | Dry  | Dry  | Dry | Dry | Dry.                                                                  |
| WCD  | 8.35 | 1260 | 36  | <5  | pH decreased 0.12. EC decreased 20. TSS decreased 1. O&G no change.   |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; TSS – Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G – Oil and Grease measures amount of hydrocarbons (oils and fuels) in water

#### 5.2.2 Discussion - Compliance / Non Compliance

All onsite and offsite water quality is consistent with longer term averages and within the site water management plan trigger values.

#### SURFACE WATER DISCHARGES 5.3

#### 5.3.1 Monitoring Data Results

There were five wet weather discharge events during the period. A summary of discharge monitoring results is provided below with the laboratory reports provided in Appendix 8.

| Date       | Dam  | pН   | EC  | TSS               | 0&G | Compliance                                  | Туре        | 5 Day<br>Rain |
|------------|------|------|-----|-------------------|-----|---------------------------------------------|-------------|---------------|
| 24/12/2012 | SB2  | 7.99 | 368 | <mark>110</mark>  | <5  | Compliant – TSS OK because Rainfall >39.2mm | Wet Weather | 63.0          |
| 24/12/2012 | SB9  | 7.20 | 166 | <mark>1530</mark> | <5  | Compliant – TSS OK because Rainfall >39.2mm | Wet Weather | 63.0          |
| 29/01/2013 | SB2  | 7.40 | 199 | <mark>298</mark>  | <5  | Compliant – TSS OK because Rainfall >39.2mm | Wet Weather | 148.6         |
| 29/01/2013 | SB9  | 6.88 | 169 | <mark>198</mark>  | <5  | Compliant – TSS OK because Rainfall >39.2mm | Wet Weather | 148.6         |
| 29/01/2013 | SB10 | 7.32 | 202 | <mark>508</mark>  | <5  | Compliant – TSS OK because Rainfall >39.2mm | Wet Weather | 148.6         |
| Crite      | ria  | 85   | N/A | 50                | 10  |                                             |             |               |

pH - measure of acidity/alkalinity; EC - Electrical Conductivity measures salinity; TSS - Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G - Oil and Grease measures amount of hydrocarbons (oils and fuels) in water; NT - Not Tested

#### 5.3.2 Discussion - Compliance / Non Compliance

Although the Total Suspended Solids (sediment) levels were greater than 50mg/L; all dirty water discharge results were in compliance with WCC's Environmental Protection Licence 12290 because the rainfall exceeded 39.2mm and there were no impacts on water quality monitored in Quipolly and Werris Creeks' catchments as a result of the dirty water discharge events. The high Total Suspended Solids reflects the recent disturbance associated with the western dump extension and construction of the northern Mine Infrastructure Area.

#### 5.3 WATER COMPLAINTS

There was one groundwater complaint during the period. A CCC member passed on a complaint from a Quipolly resident alleging that their bore water level had dropped and has become contaminated with "rotten egg" gas. The Operations Manager and Environmental Officer met with the complainant. WCC have subsequently taken creek and groundwater samples at the property as well as upstream and downstream to compare against ANZECC (2000) water guality guidelines for Livestock Watering and Irrigation. Specific actions taken in relation to this complaint are outlined in Section 6.

#### COMPLAINTS SUMMARY 6.0

There were seven complaints received during the period with the details summarised below. In total there were four complaints related to dust; one complaint related to blasting (odour), one complaint related to clearing and one complaint for groundwater impacts. There were seven different complainants during the period with four complaints from Werris Creek residents and two complaints from Quipolly residents, and one from WIRES.

| #   | Date                  | Complainant        | Complaint                                                                                                                                                   | Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Action Taken                                                                                                                                                                       |
|-----|-----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 264 | 22/11/2012<br>12:32pm | AH<br>Werris Creek | Complainant alleges that<br>the WCC blast smelt<br>sulfurous and could see a<br>dust cloud from the mine<br>towards Werris Creek.                           | The pre-blast weather check confirmed<br>winds not towards Werris Creek. The blast<br>results were in compliance. Upon<br>investigation there was no obvious reason to<br>confirm the cause of the odour or whether it<br>was sourced from the blast.                                                                                                                                                                                                                                                                         | A written response<br>provided to the<br>complainant. The next blast<br>to the former magazine<br>area will have the DO NOT<br>BLAST arc around Werris<br>Creek will be increased. |
| 265 | 28/11/2012<br>1:09pm  | DoP/Wires          | The complaint from<br>WIRES was in relation<br>to impacts of clearing on<br>protected fauna during<br>nesting season.                                       | WCC undertook clearing on 20 <sup>th</sup> November<br>in accordance with Biodiversity and Offset<br>Management Plan. Approximately 20<br>habitat trees were assessed with no fauna<br>identified. After clearing, no threatened<br>fauna were identified however a number of<br>nestlings were found and were taken to<br>WIRES to be cared for.                                                                                                                                                                             | Ecologists to issue a<br>Clearing Report. A written<br>report provided to DoP.                                                                                                     |
| 266 | 09/01/2013<br>10:08am | Q<br>Quipolly      | A lot of dust from the<br>mine blowing towards<br>Quipolly.                                                                                                 | The complaint coincided with a sudden<br>increase in wind speed from 7m/s to over<br>13m/s at 10am with wind speed dropping<br>back to average at 10:30am. All five water<br>carts were operating applying 2.4ML of<br>water on the 9/1 for dust suppression.                                                                                                                                                                                                                                                                 | EO met with complainant<br>on day of complaint. A<br>written response provided<br>to the complainant.                                                                              |
| 267 | 14/01/2013<br>11:41am | AI<br>Werris Creek | Last fortnight dust has<br>been bad, especially 9/1<br>& 10/1 with coal dust on<br>house floor.                                                             | Prevailing weather conditions have been hot<br>and dry including two non-mining events<br>affecting air quality. However, Werris<br>Creek dust levels (whether from WCC or<br>other/ambient dust sources) have not<br>exceeded the accepted criteria for air quality<br>impacts and that on average the Werris<br>Creek PM10 levels are lower than that<br>measured in Tamworth indicating that<br>Werris Creek is not being adversely<br>impacted by WCC mining operations.                                                  | A written response<br>provided to the<br>complainant. ALS to<br>analyse dust sample and<br>test drinking water quality.                                                            |
| 268 | 24/01/2013<br>8:01am  | I<br>Werris Creek  | Black dust has coated<br>roof and swimming pool<br>over the last fortnight.<br>Blast dust looks like coal<br>dust.                                          | Prevailing weather conditions have been hot<br>and dry including two non-mining events<br>affecting air quality. However, Werris<br>Creek dust levels (whether from WCC or<br>other/ambient dust sources) have not<br>exceeded the accepted criteria for air quality<br>impacts and that on average the Werris<br>Creek PM10 levels are lower than that<br>measured in Tamworth indicating that<br>Werris Creek is not being adversely<br>impacted by WCC mining operations.                                                  | A written response<br>provided to the<br>complainant. ALS test<br>drinking water quality.                                                                                          |
| 269 | 29/01/2013<br>2:15pm  | AJ<br>Werris Creek | Black dust on pegs has<br>stained clothes on<br>clothes line.                                                                                               | Prevailing weather conditions have been hot<br>and dry including two non-mining events<br>affecting air quality. However, Werris<br>Creek dust levels (whether from WCC or<br>other/ambient dust sources) have not<br>exceeded the accepted criteria for air quality<br>impacts and that on average the Werris<br>Creek PM10 levels are lower than that<br>measured in Tamworth indicating that<br>Werris Creek is not being adversely<br>impacted by WCC mining operations.                                                  | A written response<br>provided to the<br>complainant. ALS test<br>drinking water quality.                                                                                          |
| 270 | 31/01/2013<br>11:35am | AK<br>Quipolly     | Alleged that the bore<br>water supply is<br>contaminated.<br>Groundwater level has<br>declined and don't<br>accept that it is to do<br>with dry conditions. | Across 2012, Quipolly Alluvium aquifer<br>upstream of "Naranji" has fallen on average<br>by 0.6m across the 15 bores monitored,<br>equating to between 5 and 15% decrease.<br>Water quality monitoring of Quipolly Creek<br>and Quipolly Alluvium has not identified<br>any changes in water chemistry or<br>contamination of the creek or aquifer.<br>Rainfall had only reached 64% of the<br>Quirindi Long Term Average (259mm out<br>of 403mm for April to November)<br>demonstrating how dry it was prior to<br>December. | ALS to test bore water<br>quality and commence<br>monitoring bimonthly<br>water levels. A written<br>response provided to the<br>complainant.                                      |

# 7.0 GENERAL

Please feel free to ask any questions in relation to the information contained within this document during Item 7 of the meeting agenda.

Regards Andrew Wright Environmental Officer

# Appendix 1 – Dust Monitoring Results – PM10

#### Werris Creek Coal HVAS TEOM Dust Monitoring 2012-2013

| Site                   | e 2.5TEOM92<br>Werris | Monthly    | Annual  | 10TEOM92<br>Werris | EPL#30<br>Monthly | Annual  | HVP20<br>Tonsley | EPL#1<br>Monthly | Rolling<br>Annual | HVP98       | EPL#28<br>Monthly | Rolling<br>Annual | HVP1        | Monthly           | Rolling<br>Annual | HVP11       | EPL#29<br>Monthly | Rolling<br>Annual | HVT98  | Monthly      | Rolling<br>Annual | PM10<br>24hr | PM10<br>Annual | TSP<br>Annual |
|------------------------|-----------------------|------------|---------|--------------------|-------------------|---------|------------------|------------------|-------------------|-------------|-------------------|-------------------|-------------|-------------------|-------------------|-------------|-------------------|-------------------|--------|--------------|-------------------|--------------|----------------|---------------|
| Date                   | e Creek               | Summary    | Average | Creek              | Summary           | Average | Park             | Summary          | Average           | Kyooma      | Summary           | Average           | Escott      | Summary           | Average           | Glenara     | Summary           | Average           | Kyooma | Summary      | Average           | Limit        | Average        | Average       |
| 02-Apr-12              |                       |            |         | 22                 | 6.2               | 45.0    | 19               | 7.5              | 19.0              | 29          | 12.2              | 28.6              | 18          | 8.2               | 17.6              | 18          | 8.2               | 17.6              | 66     | 22.0         | 66.4              | 50           | 30             | 90            |
| 14-Apr-12              |                       |            |         | 6                  | 17.9              | 15.9    | 8                | 17.4             | 14.2              | 12          | 24.8              | 25.9              | 20          | 16.0              | 15.3              | 20          | 16.0              | 15.3              | 22     | 59.6         | 59.6<br>47.0      | 50           | 30             | 90            |
| 20-Apr-12              |                       |            |         | 23                 | 23.0              |         | 19               | 19.0             | 15.3              | 26          | 28.6              | 22.6              | 14          | 20.0              | 15.1              | 14          | 20.0              | 15.1              | 80     | 79.9         | 55.3              | 50           | 30             | 90            |
| 26-Apr-12              |                       |            |         | 12                 |                   |         | 13               |                  | 14.9              | 17          |                   | 21.5              | 13          |                   | 14.7              | 13          |                   | 14.7              | 54     |              | 55.0              | 50           | 30             | 90            |
| 02-May-12              | 2                     |            |         | 11                 | 11.4              |         | 13               | 12.6             | 14.5              | 8           | 8.4               | 19.4              | 14          | 11.8              | 14.6              | 14          | 11.8              | 14.6              | 27.5   | 27.5         | 50.4              | 50           | 30             | 90            |
| 08-May-12              |                       |            |         | 26                 | 15.3              | 15.6    | 20               | 17.9             | 15.3              | 49          | 19.9<br>12.8      | 23.6              | 18          | 14.2<br>14.0      | 15.0              | 18          | 14.2              | 15.0              | 114    | 51.3<br>22.0 | 59.5              | 50           | 30             | 90            |
| 20-May-12              |                       |            |         | 15                 | 25.8              |         | 17               | 26.7             | 16.8              | 12          | 48.8              | 22.2              | 12          | 17.7              | 14.6              | 12          | 17.7              | 14.6              | 28     | 114.0        | 53.0              | 50<br>50     | 30             | 90<br>90      |
| 26-May-12              | 2                     |            |         | 4                  |                   |         | 5                |                  | 15.6              | 4           |                   | 19.4              | 3           |                   | 13.5              | 3           |                   | 13.5              | 6      |              | 48.3              | 50           | 30             | 90            |
| 01-Jun-12              |                       |            |         | 19                 |                   |         | 12               |                  | 15.2              | 8           |                   | 18.4              | 4           |                   | 12.6              | 4           |                   | 12.6              | 20     |              | 45.7              | 50           | 30             | 90            |
| 07-Jun-12              |                       |            |         | 12                 | 3.7               |         | 7                | 4.8              | 14.5              | 3           | 3.3               | 17.1              | 3           | 3.2               | 11.8              | 3           | 3.2               | 11.8              | 7      | 5.5          | 42.5              | 50           | 30             | 90            |
| 13-Jun-12              |                       |            |         | 10                 | 12.1              | 14.4    | 9                | 9.4<br>0.1       | 14.1              | 5<br>13     | 10.8              | 16.0              | 8           | 7.0<br>5.2        | 11.4              | 8           | 7.0               | 11.4              | 31     | 24.5<br>18.3 | 40.5<br>39.8      | 50           | 30             | 90            |
| 25-Jun-12              |                       |            |         | 17                 | 18.7              |         | 15               | 15.4             | 13.8              | 31          | 31.2              | 17.0              | 17          | 17.4              | 11.6              | 17          | 17.4              | 11.6              | 67     | 66.6         | 41.6              | 50           | 30             | 90            |
| 01-Jul-12              |                       |            |         | 10                 |                   |         | 9                |                  | 13.5              | 4           |                   | 16.2              | 5           |                   | 11.2              | 5           |                   | 11.2              | 7      |              | 39.5              | 50           | 30             | 90            |
| 07-Jul-12              |                       |            |         | 8                  | 6.3               |         | 8                | 6.3              | 13.2              | 5           | 3.0               | 15.5              | 7           | 4.8               | 10.9              | 14          | 5.2               | 11.4              | 5      | 4.8          | 37.5              | 50           | 30             | 90            |
| 13-Jul-12              |                       |            |         | 8                  | 8.6               | 13.0    | 8                | 8.5              | 12.9              | 5           | 4.5               | 14.9              | 5           | 6.6               | 10.6              | 6           | 8.4               | 11.0              | 5      | 6.1          | 35.6              | 50           | 30             | 90            |
| 19-Jul-12<br>25-Jul-12 |                       |            |         | 11                 | 8.3               |         | 11               | 8.3              | 12.8              | 6           | 4.5               | 14.4              | 5           | 5.2               | 10.3              | 9           | 7.9               | 10.9              | 8      | 5.2<br>8.2   | 34.2              | 50<br>50     | 30<br>30       | 90            |
| 31-Jul-12              |                       |            |         | 17                 | 10.7              |         | 18               | 10.7             | 12.8              | 11          | 0.0               | 13.7              | 15          | 10.4              | 10.5              | 16          | 14.2              | 11.0              | 15     | 0.2          | 31.9              | 50           | 30             | 90            |
| 06-Aug-12              |                       |            |         | 10                 | 7.1               |         | 10               | 7.1              | 12.6              | 6           | 5.3               | 13.4              | 7           | 4.8               | 10.4              | 9           | 8.6               | 10.9              | 13     | 10.7         | 31.0              | 50           | 30             | 90            |
| 12-Aug-12              |                       |            |         | 9                  | 10.4              | 12.5    | 10               | 10.9             | 12.5              | 10          | 8.6               | 13.2              | 9           | 9.6               | 10.3              | 11          | 12.0              | 10.9              | 15     | 13.9         | 30.3              | 50           | 30             | 90            |
| 18-Aug-12              |                       |            |         | 7                  | 9.0               |         | 7                | 9.8              | 12.3              | 5           | 10.1              | 12.9              | 5           | 9.0               | 10.1              | 11          | 10.8              | 10.9              | 11     | 14.6         | 29.5              | 50           | 30             | 90            |
| 24-Aug-12              |                       |            |         | 9                  | 17.0              |         | 10               | 17.8             | 12.2              | 20          | 10.6              | 12.8              | 12          | 15.0              | 10.2              | 14          | 16.3              | 11.0              | 30     | 16.3         | 29.0              | 50           | 30             | 90            |
| 05-Sep-12              |                       | 3.1        |         |                    | 7.3               |         | 23               | 10.8             | 12.4              | 19          | 10.8              | 13.3              | 30          | 6.9               | 11.1              | 29          | 9.1               | 12.0              | 30     | 17.3         | 29.1              | 50           | 30             | 90            |
| 11-Sep-12              |                       | 8.9        | 8.9     |                    | 15.3              | 13.0    | 29               | 20.5             | 13.4              | 23          | 18.0              | 13.6              | 26          | 18.8              | 11.6              | 28          | 20.5              | 12.6              | 36     | 28.5         | 29.3              | 50           | 30             | 90            |
| 17-Sep-12              |                       | 8.1        |         |                    | 14.6              |         | 22               | 21.9             | 13.6              | 17          | 19.1              | 13.8              | 16          | 16.4              | 11.8              | 17          | 19.2              | 12.7              | 29     | 30.0         | 29.3              | 50           | 30             | 90            |
| 23-Sep-12              |                       | 16.4       |         |                    | 26.5              |         | 11               | 29.2             | 13.6              | 11          | 23.1              | 13.7              | 7           | 29.8              | 11.6              | 9           | 29.2              | 12.6              | 17     | 35.8         | 28.9              | 50           | 30             | 90            |
| 29-Sep-12<br>05-Oct-12 |                       | 23         |         |                    | 4.6               |         | 14               | 73               | 13.0              | 8<br>12     | 5.6               | 13.5              | 15          | 11.2              | 11.7              | 20          | 97                | 12.0              | 21     | 14.4         | 28.5<br>28.2      | 50           | 30             | 90            |
| 11-Oct-12              |                       | 10.7       | 9.8     |                    | 18.1              | 13.7    | 7                | 14.6             | 13.5              | 6           | 11.6              | 13.2              | 11          | 15.7              | 11.9              | 10          | 15.8              | 12.8              | 14     | 23.2         | 27.8              | 50           | 30             | 90            |
| 17-Oct-12              |                       | 10.1       |         |                    | 17.7              |         | 22               | 14.4             | 13.8              | 23          | 9.1               | 13.5              | 18          | 15.3              | 12.1              | 25          | 13.2              | 13.1              | 47     | 17.8         | 28.4              | 50           | 30             | 90            |
| 23-Oct-12              |                       | 29.1       |         |                    | 41.4              |         | 12               | 22.0             | 13.7              | 9           | 22.6              | 13.4              | 15          | 19.2              | 12.2              | 11          | 24.9              | 13.1              | 18     | 46.9         | 28.1              | 50           | 30             | 90            |
| 29-Oct-12              |                       | 0.0        |         |                    | 27                |         | 27               | 80               | 14.1              | 19<br>10    | 57                | 13.5              | 16<br>23    | 9.7               | 12.3              | 15<br>25    | 77                | 13.1              | 28     | 10.4         | 28.1              | 50           | 30             | 90            |
| 10-Nov-12              |                       | 6.8        | 8.8     |                    | 14.3              | 13.8    | 9                | 0.9<br>24.1      | 14.3              | 6           | 15.3              | 13.4              | 9           | 21.7              | 12.0              | 8           | 18.5              | 13.4              | 10     | <b>24.0</b>  | 28.0              | 50           | 30             | 90            |
| 16-Nov-12              |                       | 6.6        |         |                    | 14.2              |         | 25               | 25.1             | 14.5              | 13          | 18.6              | 13.4              | 27          | 23.3              | 12.9              | 20          | 20.3              | 13.4              | 24     | 26.9         | 27.5              | 50           | 30             | 90            |
| 22-Nov-12              |                       | 20.5       |         |                    | 33.8              |         | 36               | 36.0             | 15.0              | 21          | 20.5              | 13.6              | 33          | 33.0              | 13.4              | 26          | 25.6              | 13.7              | 32     | 31.7         | 27.6              | 50           | 30             | 90            |
| 28-Nov-12              |                       | 0.0        |         |                    | 2.2               |         | 11               | 47               | 14.9              | 13          | 2.4               | 13.6              | 14          |                   | 13.4              | 20          | 2.2               | 13.9              | 15     |              | 27.3              | 50           | 30             | 90            |
| 10-Dec-12              |                       | 0.8<br>6.5 | 82      |                    | 2.3<br>13.1       | 13.7    | 5<br>15          | 4.7<br>9 2       | 14.7              | 3           | 3.1<br>7 4        | 13.0              | 8           | 0.0<br><b>8 9</b> | 13.3              | 10          | 3.∠<br>13.8       | 13.8              | 10     | 0.0<br>13.0  | 27.3              | 50           | 30             | 90            |
| 16-Dec-12              |                       | 5.5        | 0.2     |                    | 13.5              | 10.1    | 9                | 9.2              | 14.5              | 9           | 6.9               | 13.2              | 9           | 8.4               | 13.0              | 26          | 9.9               | 13.8              | 19     | 12.4         | 26.7              | 50           | 30             | 90            |
| 22-Dec-12              |                       | 17.9       |         |                    | 28.3              |         | 7                | 14.9             | 14.4              | 5           | 12.6              | 13.0              | 8           | 13.8              | 12.9              | 10          | 26.3              | 13.7              | 9      | 18.7         | 26.2              | 50           | 30             | 90            |
| 28-Dec-12              |                       |            |         |                    |                   |         | 20               |                  | 14.5              | 5           |                   | 12.9              | 7           |                   | 12.8              | 9           |                   | 13.6              | 10     |              | 25.9              | 50           | 30             | 90            |
| 03-Jan-13              |                       | 0.0        | 0.4     |                    | 0.1               | 40.7    | 13               | 13.3             | 14.5              | 10          | 4.5               | 12.8              | 12          | 6.7               | 12.7              | 16          | 9.0               | 13.7              | 16     | 9.6          | 25.7              | 50           | 30             | 90            |
| 09-Jan-13<br>15-Jan-13 |                       | 6.8        | 0.1     |                    | 14.2              | 13.7    | 30               | 21.0<br>19.9     | 14.8              | 23          | 7.8               | 12.0              | 11          | 11.9              | 12.9              | 34<br>12    | 12.3              | 14.1              | 17     | 19.7         | 25.0              | 50<br>50     | 30<br>30       | 90            |
| 21-Jan-13              |                       | 23.0       |         |                    | 36.1              |         |                  | 29.8             | 14.8              | 8           | 22.6              | 12.8              | 7           | 22.3              | 12.8              | 10          | 34.2              | 14.0              | 14     | 41.4         | 25.6              | 50           | 30             | 90            |
| 27-Jan-13              |                       |            |         |                    |                   |         | 6                |                  | 14.6              | 4           |                   | 12.6              | 4           |                   | 12.6              | 5           |                   | 13.8              | 10     |              | 25.3              | 50           | 30             | 90            |
| 02-Feb-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3              | 50           | 30             | 90            |
| 08-F6D-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3<br>25.3      | 50           | 30             | 90            |
| 20-Feb-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3              | 50           | 30             | 90            |
| 26-Feb-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3              | 50           | 30             | 90            |
| 04-Mar-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3              | 50           | 30             | 90            |
| 10-Mar-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3              | 50           | 30             | 90            |
| 22-Mar-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3              | 50           | 30             | 90            |
| 28-Mar-13              |                       |            |         |                    |                   |         |                  |                  | 14.6              |             |                   | 12.6              |             |                   | 12.6              |             |                   | 13.8              |        |              | 25.3              | 50           | 30             | 90            |
| Min                    |                       | 0.0        |         |                    | 0.1               |         |                  |                  |                   | 3.0         |                   |                   | 3.2         |                   |                   | 3.2         |                   |                   | 4.8    |              |                   |              |                |               |
| Capture                |                       | 29.1       |         |                    | 41.4              | •       | 36.0<br>80%      |                  |                   | 40.8<br>82% |                   |                   | 33.0<br>84% |                   |                   | 34.2<br>84% |                   |                   | 82%    |              |                   |              |                |               |

<u>Appendix 2 – Dust Monitoring Results – Deposited Dust</u>

|         |           |                   |                 |               |          | Dep          | osited    | Dust -         | Werris (          | Creek (         | Coal Min         | e 2012-2         | 2013            |                  |               |                   |         |         |                     |
|---------|-----------|-------------------|-----------------|---------------|----------|--------------|-----------|----------------|-------------------|-----------------|------------------|------------------|-----------------|------------------|---------------|-------------------|---------|---------|---------------------|
|         | M<br>(g/m | IONTH<br>2/month) |                 | April<br>2012 | May 2012 | June<br>2012 | July 2012 | August<br>2012 | September<br>2012 | October<br>2012 | November<br>2012 | December<br>2012 | January<br>2013 | February<br>2013 | March<br>2013 | ANNUAL<br>AVERAGE | MINIMUM | MAXIMUM | AQGHGMP<br>Criteria |
|         | Daa       | 0                 | Total<br>Matter | 2.5           | 1.2      | 1.0          | 1.5       | 0.4            | 1.3               | 2.3             | 1.7              | 1.4              | *3.3            |                  |               | 4.5               |         |         | 10                  |
| -       | DG2       | Cintra            | Ash<br>Content  | 1.4           | 0.8      | 0.8          | 1.0       | 0.3            | 0.7               | 1.2             | 1.0              | 0.7              | *1.6            |                  |               | 1.5               | 0.4     | 2.5     | 4.0                 |
|         |           |                   | Total<br>Matter | 1.1           | 1.0      | 0.5          | 0.7       | 2.5            | 1.0               | 1.2             | 1.2              | 1.6              | 3.2             |                  |               |                   |         |         |                     |
| -       | DG5       | Railway View      | Ash<br>Content  | 0.6           | 0.7      | 0.5          | 0.5       | 1.5            | 0.7               | 0.8             | 1.0              | 1.4              | 2.7             |                  |               | 1.4               | 0.5     | 3.2     | 4.0                 |
|         |           |                   | Total<br>Matter | 0.6           | 0.4      | 0.3          | 0.5       | 0.3            | *1.2              | 1.0             | 1.0              | 1.2              | 3.3             |                  |               |                   |         |         |                     |
| EPL #1  | DG20      | Tonsley Park      | Ash<br>Content  | 0.3           | 0.4      | 0.3          | 0.4       | 0.2            | *0.5              | 0.5             | 0.6              | 0.8              | 2.5             |                  |               | 1.0               | 0.3     | 3.3     | 4.0                 |
|         |           |                   | Total<br>Matter | 1.0           | 2.1      | 3.5          | *1.8      | 5.0            | 0.6               | 0.7             | 0.7              | 1.0              | 2.0             |                  |               |                   |         |         |                     |
| -       | DG15      | Plain View        | Ash<br>Content  | 0.6           | 1.2      | 2.5          | *0.6      | 2.8            | 0.5               | 0.5             | 0.4              | 0.8              | 1.5             |                  |               | 1.8               | 0.6     | 5.0     | 4.0                 |
|         |           |                   | Total<br>Matter | *0.7          | 1.3      | 0.8          | 0.2       | 0.6            | 0.7               | *0.7            | 0.5              | 0.6              | 1.6             |                  |               |                   |         |         |                     |
| -       | DG9       | Marengo           | Ash<br>Content  | *0.3          | 0.7      | 0.5          | 0.2       | 0.3            | 0.5               | 0.3             | 0.3              | 0.5              | 1.4             |                  |               | 0.8               | 0.2     | 1.6     | 4.0                 |
|         | Dana      | Mountain          | Total<br>Matter | 3.5           | 0.5      | 0.5          | 1.2       | 0.5            | 0.6               | *0.3            | 0.1              | 3.2              | 3.0             |                  |               | 4.5               |         |         | 4.0                 |
| -       | DG22      | View              | Ash<br>Content  | 2.6           | 0.5      | 0.4          | 1.0       | 0.3            | 0.5               | 0.1             | 0.1              | 1.6              | 1.5             |                  |               | 1.5               | 0.1     | 3.5     | 4.0                 |
| EDI #20 | DC11      | Clanara           | Total<br>Matter | 1.5           | 2.1      | *2.6         | c425      | 2.4            | 4.5               | 1.2             | 0.7              | *3.7             | 1.2             |                  |               | 10                | 0.7     | 4.5     | 4.0                 |
| EFL#29  | DGII      | Glenara           | Ash<br>Content  | 0.8           | 0.9      | *0.9         | c391      | 1.2            | 4.0               | 0.8             | 0.5              | *1.6             | 0.9             |                  |               | 1.9               | 0.7     | 4.5     | 4.0                 |
|         | DCM       | Hanaldana         | Total<br>Matter |               |          |              |           | 0.5            | 0.5               | 0.7             | 0.6              | *3.6             | 1.8             |                  |               |                   | 0.5     | 4.9     | 4.0                 |
| -       | DG24      | Hazeidene         | Ash<br>Content  |               |          |              |           | 0.3            | 0.5               | 0.5             | 0.5              | *1.6             | 1.4             |                  |               | 0.8               | 0.5     | 1.0     | 4.0                 |
|         | DC17      | Woodlanda         | Total<br>Matter |               |          |              |           | 0.3            | 0.5               | 2.8             | 1.8              | *2.5             | 2.7             |                  |               | 16                | 0.2     | 2.0     | 4.0                 |
| -       | DG17      | woodiands         | Ash<br>Content  |               |          |              |           | 0.3            | 0.5               | 1.5             | 1.0              | *0.9             | 1.8             |                  |               | 1.0               | 0.3     | 2.8     | 4.0                 |
|         | DC06      | Talayara          | Total<br>Matter |               |          |              |           | 0.2            | 0.6               | 0.8             | 0.6              | 0.9              | 1.4             |                  |               | 0.9               | 0.2     | 14      | 4.0                 |
| -       | DG96      | Talavera          | Ash<br>Content  |               |          |              |           | 0.2            | 0.4               | 0.6             | 0.4              | 0.5              | 0.3             |                  |               | 0.8               | 0.2     | 1.4     | 4.0                 |
| EDI #29 | DC08      | Kyooma            | Total<br>Matter |               |          |              |           | *0.3           | 0.4               | *1.1            | *0.7             | 1.0              | 1.9             |                  |               | 11                | 0.4     | 1.0     | 4.0                 |
| LF L#20 | 0090      | Rybolila          | Ash<br>Content  |               |          |              |           | *0.1           | 0.3               | *0.5            | *0.3             | 0.6              | 1.2             |                  |               | 1.1               | 0.4     | 1.5     | 4.0                 |
| _       | DC14      | Groonslonos       | Total<br>Matter |               |          |              |           | *0.3           | 0.5               | 0.6             | 0.8              | 1.0              | 1.5             |                  |               | 0.0               | 0.5     | 15      | 4.0                 |
| -       | 0014      | Greensiopes       | Ash<br>Content  |               |          |              |           | *0.1           | 0.4               | 0.5             | 0.4              | 0.5              | 1.2             |                  |               | 0.5               | 0.5     | 1.5     | 4.0                 |
| _       | DG62      | Werris Creek      | Total<br>Matter |               |          |              |           | *0.7           | 0.5               | 0.3             | *0.7             | 0.5              | 0.9             |                  |               | 0.6               | 0.3     | 0.9     | 4.0                 |
|         | 0002      | South             | Ash<br>Content  |               |          |              |           | *0.3           | 0.3               | 0.3             | *0.3             | 0.3              | 0.7             |                  |               | 0.0               | 0.5     | 0.5     | 4.0                 |
| EPI #30 | DG92      | Werris Creek      | Total<br>Matter |               |          |              |           | *0.6           | 0.5               | 0.7             | *2.5             | *1.1             | 1.2             |                  |               | 0.8               | 0.5     | 12      | 4.0                 |
| LI L#30 | 0032      | Centre            | Ash<br>Content  |               |          |              |           | *0.2           | 0.3               | 0.4             | *0.5             | *0.5             | 0.9             |                  |               | 0.0               | 0.5     | 1.2     | 4.0                 |
| -       | DG101     | Westfall          | Total<br>Matter |               |          |              |           | *0.6           | 0.6               | 0.8             | 1.1              | 1.5              | 2.7             |                  |               | 13                | 0.6     | 27      | 4.0                 |
|         | Delet     | Westian           | Ash<br>Content  |               |          |              |           | *0.2           | 0.4               | 0.4             | 0.6              | 0.8              | 2.2             |                  |               | 1.0               | 0.0     | 2       | 4.0                 |
| -       | DG103     | West Street       | Total<br>Matter |               |          |              |           | 1.0            | 0.5               | 1.1             | 1.1              | 1.1              | 0.6             |                  |               | 0.9               | 0.5     | 1.1     | 4.0                 |
|         | 20100     |                   | Ash<br>Content  |               |          |              |           | 0.5            | 0.5               | 0.7             | 0.6              | 0.7              | 0.6             |                  |               | 0.0               | 0.0     |         |                     |
| -       | DG1       | Escott            | Total<br>Matter |               |          |              |           | *0.5           | 0.3               | 0.5             | 0.6              | 0.8              | 1.3             |                  |               | 0.7               | 0.3     | 1.3     | 4.0                 |
|         |           |                   | Ash<br>Content  |               |          |              |           | *0.2           | 0.3               | 0.3             | 0.3              | 0.4              | 1.0             |                  |               |                   |         |         |                     |
| -       | DG3       | Eurunderee        | Total<br>Matter |               |          |              |           | *0.6           | 0.4               | 0.4             | 0.8              | 1.2              | 1.6             |                  |               | 0.9               | 0.4     | 1.6     | 4.0                 |
|         |           |                   | Ash<br>Content  |               |          |              |           | *0.2           | 0.3               | 0.3             | 0.4              | 0.7              | 1.4             |                  |               |                   |         |         | •                   |
| -       | DG34      | 8 Kurrara         | Total<br>Matter |               |          |              |           | 0.5            | 1.2               | *1.9            | 1.1              | 1.2              | 1.4             |                  |               | 1.1               | 0.5     | 1.4     | 4.0                 |
|         |           | Street            | Ash<br>Content  |               |          |              |           | 0.3            | 0.5               | 0.7             | 0.6              | 0.6              | 1.0             |                  |               |                   |         |         |                     |
| -       | DG106     | Villamagna        | Total<br>Matter |               |          |              |           |                | 0.4               | 0.6             | c13.1            | 1.1              | 2.2             |                  |               | 1.1               | 0.4     | 2.2     | 4.0                 |
|         |           |                   | Ash<br>Content  |               |          |              |           |                | 0.3               | 0.3             | c11.4            | 0.7              | 1.9             |                  |               |                   |         |         |                     |

Note: All results are in the form of Insoluble Matter (g/m2/month) c - indicates sample is contaminated from a Non-Werris Creek Coal dust source and is not counted in the average \* - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e bird droppings and insects) and is excluded from the average

# Appendix 3 – Train Dust Deposition Monitoring

|                   |              |        |                             |        |              | Dep    | oosi                        | ted    | Dus          | st - C | Quir                        | indi   | Tra          | ins    | 2012                        | 2-20   | 13           |        |                             |        |              |        |                             |        |        |
|-------------------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------|
|                   |              | DD     | W30                         |        |              | DD     | N20                         |        |              | DD     | W13                         |        |              | DD     | E13                         |        |              | DD     | E20                         |        |              | DD     | E30                         |        | line   |
|                   | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Guidel |
| April 2012        | 0.8          | 25%    | 50%                         | 25%    | 0.3          | 25%    | 50%                         | 25%    | 0.3          | 30%    | 40%                         | 30%    | 0.7          | 25%    | 50%                         | 25%    | 1.0          | 10%    | 60%                         | 30%    | 0.5          | 25%    | 50%                         | 25%    | 4.0    |
| May 2012          | 1.1          | 30%    | 40%                         | 30%    | 0.7          | 35%    | 25%                         | 40%    | 0.6          | 20%    | 50%                         | 30%    | 0.6          | 40%    | 40%                         | 20%    | 0.4          | 10%    | 60%                         | 30%    | 0.7          | 25%    | 50%                         | 25%    | 4.0    |
| June 2012         | 1.0          | 35%    | 45%                         | 20%    | 0.8          | 45%    | 35%                         | 20%    | 0.9          | 35%    | 55%                         | 10%    | 0.5          | 45%    | 40%                         | 15%    | 1.9          | 20%    | 60%                         | 20%    | 1.3          | 15%    | 65%                         | 20%    | 4.0    |
| July 2012         | 1.2          | 40%    | 30%                         | 30%    | 0.8          | 40%    | 30%                         | 30%    | 1.2          | 40%    | 30%                         | 30%    | 0.7          | 40%    | 30%                         | 30%    | 2.4          | 10%    | 60%                         | 30%    | 1.5          | 25%    | 50%                         | 25%    | 4.0    |
| August 2012       | 0.6          | 30%    | 30%                         | 40%    | 0.6          | 30%    | 30%                         | 30%    | 0.5          | 30%    | 50%                         | 20%    | 0.5          | 30%    | 50%                         | 20%    | 0.7          | 20%    | 50%                         | 30%    | 2.7          | 15%    | 20%                         | 60%    | 4.0    |
| September 2012    | 1.7          | 20%    | 20%                         | 60%    | 1.2          | 20%    | 50%                         | 30%    | 1.3          | 15%    | 55%                         | 30%    | 0.9          | 20%    | 50%                         | 30%    | 0.7          | 20%    | 60%                         | 20%    | 0.6          | 10%    | 60%                         | 30%    | 4.0    |
| October 2012      | 1.5          | 15%    | 50%                         | 35%    | 1.4          | 15%    | 50%                         | 35%    | 0.9          | 20%    | 40%                         | 40%    | 1.0          | 25%    | 50%                         | 25%    | 0.6          | 20%    | 40%                         | 40%    | 1.6          | 10%    | 50%                         | 40%    | 4.0    |
| November 2012     | 1.2          | 10%    | 60%                         | 10%    | 1.5          | 15%    | 50%                         | 10%    | 0.8          | 15%    | 40%                         | 25%    | 0.9          | 15%    | 15%                         | 40%    | 2.4          | 5%     | 50%                         | 25%    | 1.5          | 10%    | 35%                         | 25%    | 4.0    |
| December 2012     | 1.0          | 15%    | 60%                         | 25%    | 1.4          | 5%     | 65%                         | 30%    | 1.7          | 60%    | 25%                         | 15%    | 2.4          | 15%    | 65%                         | 20%    | 1.4          | 20%    | 60%                         | 20%    | 3.6          | 5%     | 85%                         | 10%    | 4.0    |
| January 2013      | 1.8          | 10%    | 50%                         | 30%    | 1.3          | 10%    | 70%                         | 20%    | 1.5          | 10%    | 60%                         | 30%    | 1.3          | 15%    | 65%                         | 20%    | 1.0          | 10%    | 60%                         | 30%    | 2.5          | 5%     | 70%                         | 10%    | 4.0    |
| February 2013     |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| March 2013        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| ANNUAL AVERAGE    |              | 1      | .2                          |        |              | 1      | .0                          |        |              | 1      | .0                          |        |              | 1      | .0                          |        |              | 1      | .3                          |        |              | 1      | .7                          |        | 4.0    |
| Average Coal %    |              | 23.    | .0%                         |        |              | 24.0%  |                             |        |              | 27.    | .5%                         |        |              | 27.    | .0%                         |        |              | 14     | .5%                         |        |              | 14     | .5%                         |        | -      |
| Average Coal g/m2 |              | 0.     | 27                          |        |              | 0.24   |                             |        |              | 0.     | 27                          |        | 0.26         |        | 0.18                        |        |              |        | 0.24                        |        |              | -      |                             |        |        |
| MINIMUM           |              | 0      | .6                          |        | 0.3          |        |                             | 0.3    |              |        | 0.5                         |        | 0.4          |        |                             |        | 0.5          |        |                             | -      |              |        |                             |        |        |
| MAXIMUM           |              | 1      | .8                          |        |              | 1.5    |                             |        |              | 1.7    |                             |        | 2.4          |        |                             |        | 2.4          |        |                             |        | 3.6          |        |                             |        | 4.0    |

Note: All results are in the form of Insoluble Matter (g/m2/month)

# Appendix 4 – Noise Monitoring Results



6 December 2012

Ref: 04035/4611

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

#### RE: NOVEMBER 2012 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Thursday 29th November, 2012 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

#### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendix 1**.

|                  |                         |      | Table 1                        |                                        |
|------------------|-------------------------|------|--------------------------------|----------------------------------------|
|                  |                         | WCC  | Attended Noise Monitoring      | g Program                              |
| Monitoring Point | Duration                | ID   | Receiver                       | Relevant Monitoring Requirements       |
| A                | 15 minutes <sup>1</sup> | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |
| B1               | $60 \text{ minutes}^2$  | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |
|                  | 00 minutes              | R8*  | Almawillee                     | Private Agreement                      |
| B2               | $60 \text{ minutes}^2$  | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |
| DZ               | 00 111110165            | R22  | Mountain View                  | 60 minutes as per EPL 12290            |
| C                | 15 minutos <sup>1</sup> | R10* | Meadholme                      | Private Agreement                      |
| C                | 15 111110165            | R11* | Glenara                        | Flivate Agreement                      |
| D                | 60 minutes <sup>2</sup> | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |
| E                | 60 minutes <sup>2</sup> | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |
| F                | 60 minutes <sup>2</sup> | R96  | Talavera                       | 60 minutes as per EPL 12290            |
| G                | 15 minutes <sup>1</sup> | R97  |                                | PA10_0059 Private Property outside NMZ |
| Н                | 15 minutes <sup>1</sup> | R98* | Kyooma                         | Private Agreement                      |
| I                | 60 minutes <sup>2</sup> | R57  | Kurrara Street <sup>®</sup>    | 60 minutes as per EPL 12290            |
| J                | 15 minutes <sup>1</sup> |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |
| К                | 15 minutos <sup>1</sup> | R20* | Tonsley Park                   | Private Agreement                      |
| N N              | 15 minutes              | R21* | Alco Park                      | Filvate Agreement                      |
| L                | 15 minutes <sup>1</sup> | R103 |                                | PA10_0059 Private Property outside NMZ |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

- NMZ Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);
- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

#### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is





required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

#### Measurement Analysis

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather station.

#### WCC Operations

WCC operations on 29<sup>th</sup> November 2012 had the 3600 and PC4000 excavators in Strip 15 east at RL390m and two 1900 excavators in Strip 12 east at RL320m. The 3600 and PC4000 truck fleets were running to the RL430m east dump during both day and night shifts, and the two 1900 truck fleets were running to the RL360m in pit dump both day and night shift. Scraper operations were limited to day shift only stripping soil for the new Mine Infrastructure Area. The crushing plant operated to 3:30am with no trains loaded during the monitoring period.

#### Noise Compliance Assessment

The results shown in **Tables 2** and **3** indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period.



|                       |                |            |                 | Table 2             |                  |                                                     |
|-----------------------|----------------|------------|-----------------|---------------------|------------------|-----------------------------------------------------|
|                       |                | WCC        | Noise Monitor   | ing Results – 29    | November 20      | 12 (Day)                                            |
|                       |                | dB(A),     | Criterion       | Inversion           | Wind             |                                                     |
| Location              | Time           | Leq        | dB(A) Leq       | <sup>o</sup> C/100m | speed/ dir       | Identified Noise Sources                            |
| A R5 Rosehill         | 2.25 pm        | 36         | 35              | n/a                 | 3.0/169          | Birds & insects (36), WCC inaudible                 |
| B1 R7 83 Wadwells     | 12.50 pm       | 40         | 37              | n/a                 | 2.0/229          | Birds & insects (39), traffic (32), WCC barely      |
| Lane/R8 Almawillee    |                |            |                 |                     |                  | audible                                             |
| B2 R9Gedhurst/ R22    | 1.20 pm        | 49         | 37/36*          | n/a                 | 2.5/181          | Birds & insects (49), WCC (25)                      |
| Mountain View         |                |            |                 |                     |                  |                                                     |
| C R10 Meadholme/      | 2.46 pm        | 38         | 39              | n/a                 | 0.8/125          | Birds & insects (37), WCC (30)                      |
| R11 Glenara           |                |            |                 |                     |                  |                                                     |
| D R24 Hazeldene       | 3.07 pm        | 40         | 37              | n/a                 | 2.9/176          | Traffic (39), birds & insects (30), WCC (30)        |
| E R12 Railway Cottage | 4.52 pm        | 44         | 38              | n/a                 | 1.9/109          | Traffic (43), birds & insects (38), WCC inaudible   |
| F R96 Talavera        | 2.39 pm        | 41         | 38              | n/a                 | 2.8/153          | Birds & insects (39), traffic (37), WCC (<25)       |
| <b>G</b> R97          | 4.03 pm        | 35         | 35              | n/a                 | 2.6/180          | Birds & insects (33), traffic (26), plane (25) WCC  |
|                       |                |            |                 |                     |                  | (22)                                                |
| H R98 Kyooma          | 3.44 pm        | 36         | 36              | n/a                 | 1.2/245          | Birds & insects (36), WCC (25)                      |
| I R57 Kurrara St      | 4.40 pm        | 48         | 35              | n/a                 | 1.9/109          | Traffic (46), birds & insects (44), WCC inaudible   |
| J R57 Coronation Ave  | 5.43 pm        | 58         | 35              | n/a                 | 1.3/88           | Traffic (58), train (40), WCC inaudible             |
| K R20 Tonsley Park/   | 4.33 pm        | 38         | 39              | n/a                 | 2.5/169          | Birds & insects (34), traffic (34), train (30), WCC |
| R21 Alco Park         |                |            |                 |                     |                  | (26)                                                |
| L R103                | 4.15 pm        | 37         | 35              | n/a                 | 3.1/180          | Train (34), birds & insects (33), WCC (26)          |
| * Godhurs             | t noise criter | a is 37dBl | (A) Log while I | Mountain Viewu      | noiso critoria i | $c_{36} dB(\Lambda) I_{00}$                         |

Gedhurst noise criteria is 37dB(A) Leq while Mountain View noise criteria is 36 dB(A) Leq

|                       |          |                     |           |                 | Table 3             |                |                                                       |
|-----------------------|----------|---------------------|-----------|-----------------|---------------------|----------------|-------------------------------------------------------|
|                       |          | WCC                 | Noise Mon | itoring Results | s – 29 Novembe      | r 2012 (Evenin | g/Night)                                              |
|                       |          | dB(A),              | dB(A),    | Criterion       | Inversion           | Wind           |                                                       |
| Location              | Time     | L1                  | Leq       | dB(A) Leq       | <sup>o</sup> C/100m | speed/ dir     | Identified Noise Sources                              |
|                       |          | (1min) <sup>1</sup> |           |                 |                     |                |                                                       |
| A R5 Rosehill         | 8.16 pm  | n/a                 | 45        | 35              | +5.1                | 1.5/264        | Bird & insects (43), dogs (41), traffic (22), WCC     |
|                       |          |                     |           |                 |                     |                | inaudible                                             |
| B1 R7 83 Wadwells     | 10.50 pm | 45                  | 47        | 37              | +0.5                | 2.5/15         | Birds & insects (46), WCC (37), traffic (34)          |
| Lane/R8 Almawillee    |          |                     |           |                 |                     |                |                                                       |
| B2 R9Gedhurst/ R22    | 7.10 pm  | n/a                 | 52        | 37/36*          | +3.3                | 0.7/50         | Birds (52), traffic (35), WCC inaudible               |
| Mountain View         |          |                     |           |                 |                     |                |                                                       |
| C R10 Meadholme/      | 10.26 pm | 41                  | 36        | 39              | +0.6                | 4.6/351        | Insects (34), WCC (32)                                |
| R11 Glenara           |          |                     |           |                 |                     |                |                                                       |
| D R24 Hazeldene       | 8.38 pm  | 40                  | 51        | 37              | +5.0                | 1.2/294        | Birds & insects (51), traffic (35), WCC (28)          |
| E R12 Railway Cottage | 10.27 pm | 39                  | 40        | 38              | +0.6                | 5.2/350        | Insects (38), traffic (34), WCC (30)                  |
| F R96 Talavera        | 7.10 pm  | n/a                 | 37        | 37              | +3.3                | 0.7/50         | Insects (37), WCC inaudible                           |
| <b>G</b> R97          | 8.37 pm  | 30                  | 45        | 35              | +4.5                | 0.8/287        | Insects (45), WCC (22)                                |
| H R98 Kyooma          | 8.18 pm  | <25                 | 39        | 36              | +5.1                | 1.5/264        | Birds & insects (39), WCC (<20)                       |
| I R57 Kurrara St      | 9.19 pm  | n/a                 | 50        | 35              | +6.4                | 1.8/338        | Frogs & insects (50), traffic (32), trains (31), WCC  |
|                       |          |                     |           |                 |                     |                | inaudible                                             |
| J R57 Coronation Ave  | 9.00 pm  | n/a                 | 40        | 35              | +4.9                | 1.9/300        | Trains (37), insects (36), traffic (32), WCC          |
|                       |          |                     |           |                 |                     |                | inaudible                                             |
| K R20 Tonsley Park/   | 10.03 pm | n/a                 | 49        | 37              | +4.6                | 3.6/358        | Insects (49), traffic (35), train (33), WCC inaudible |
| R21 Alco Park         |          |                     |           |                 |                     |                |                                                       |
| L R103                | 9.44 pm  | n/a                 | 53        | 35              | +7.6                | 0.8/342        | Insects (52), train (45), WCC inaudible               |

1. L1 (1 min) from mine noise only

\* Gedhurst noise criteria is 37dB(A) Leq while Mountain View noise criteria is 36 dB(A) Leq



Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

#### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in Appendix III.

We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Cars,

Ross Hodge Acoustical Consultant

Review:

Neil Jen - E

Neil Pennington Acoustical Consultant



SPECTRUM COUSTICS

# Appendix I



Attended Noise Monitoring Locations





# Appendix II

Noise Limits

| Location                       |                               | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|--------------------------------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|                                |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7                             | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9                             | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12                            | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22                            | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24                            | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96                            | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All other privately-owned land |                               | 35                         | 35                         | 45                    | 35                          | 40                         |

#### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |  |
|-----|----------------|-----------------------------------|-----------------------------------------|--|
| R8  | "Almawillee"   | 40                                | 45                                      |  |
| R10 | "Meadholme"    | 40                                | 45                                      |  |
| R11 | "Glenara"      | 40                                | 45                                      |  |
| R20 | "Tonsley Park" | 40                                | 45                                      |  |
| R21 | "Alco Park"    | 40                                | 45                                      |  |
| R98 | "Kyooma"       | 40                                | 45                                      |  |

#### Table 21: Properties with Private Agreements Noise Criteria





# Appendix III

Plant Sound Power Levels

| Plant Item                                   |          |     | SWLs |           | dB(A) | Data Maggurad |  |
|----------------------------------------------|----------|-----|------|-----------|-------|---------------|--|
| Туре                                         | Type No. |     | Lmax | ab(A) Leq | Lmax  | Date medSureu |  |
| Haul truck CAT 785C<br>(unattenuated)        | 608      | 108 | 116  | 120       | 122   | 17/7/12       |  |
| Haul truck CAT 785C<br>(unattenuated)        | 614      | 108 | 116  |           | 120   | 17/7/12       |  |
| Haul truck CAT 785C<br>(unattenuated)        | 609      | 108 | 116  | 120       |       | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)        | 610      | 108 | 116  | 121       |       | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)        | 611      | 108 | 116  | 120       |       | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)        | 600      | 108 | 116  | 119       |       | 11/9/12       |  |
| Haul truck CAT 785C<br>(attenuated)          | 608      | 108 | 116  | 117       | 120   | 11/9/12       |  |
| Water Cart                                   | WA897    | 111 | 118  | 113       |       | 11/9/12       |  |
| Scraper                                      | SC882    | 118 | 121  | 113       |       | 11/9/12       |  |
| Excavator (PC 3600)                          | EX551    | 116 | 120  | 115       |       | 11/9/12       |  |
| Dozer                                        | 829      | 107 | 114  | 114       |       | 11/9/12       |  |
| Crushing Plant                               | n/a      | 114 | 116  | 118       |       | 11/9/12       |  |
| Haul truck CAT 785C<br>Horn pre attenuation  | 608      | 108 | 116  |           | 129   | 17/7/12       |  |
| Haul truck Cat 785C<br>Horn post attenuation | 608      | 108 | 116  |           | 124   | 11/9/12       |  |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.



2 January 2013

Ref: 04035/4631

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

#### RE: DECEMBER 2012 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Monday 17<sup>th</sup> December, 2012 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

#### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendix 1**.

| Table 1                               |                                       |                                  |                                        |                                        |  |  |  |  |  |
|---------------------------------------|---------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|--|
| WCC Attended Noise Monitoring Program |                                       |                                  |                                        |                                        |  |  |  |  |  |
| Monitoring Point                      | Duration                              | Relevant Monitoring Requirements |                                        |                                        |  |  |  |  |  |
| A                                     | A 15 minutes <sup>1</sup> R5 Rosehill |                                  | PA10_0059 Private Property outside NMZ |                                        |  |  |  |  |  |
| B1                                    | 60 minutes <sup>2</sup>               | R7                               | 83 Wadwells Lane                       | 60 minutes as per EPL 12290            |  |  |  |  |  |
|                                       |                                       | R8*                              | Almawillee                             | Private Agreement                      |  |  |  |  |  |
| B2                                    | 60 minutes <sup>2</sup>               | R9                               | Gedhurst                               | 60 minutes as per EPL 12290            |  |  |  |  |  |
| DZ                                    |                                       | R22                              | Mountain View                          | 60 minutes as per EPL 12290            |  |  |  |  |  |
| C                                     | 15 minutes <sup>1</sup>               | R10*                             | Meadholme                              | Private Agreement                      |  |  |  |  |  |
| U                                     |                                       | R11*                             | Glenara                                | r Iwale Agreement                      |  |  |  |  |  |
| D                                     | 60 minutes <sup>2</sup>               | R24                              | Hazeldene                              | 60 minutes as per EPL 12290            |  |  |  |  |  |
| E                                     | 60 minutes <sup>2</sup>               | R12                              | Quipolly Railway Cottage               | 60 minutes as per EPL 12290            |  |  |  |  |  |
| F                                     | 60 minutes <sup>2</sup>               | R96                              | Talavera                               | 60 minutes as per EPL 12290            |  |  |  |  |  |
| G                                     | 15 minutes <sup>1</sup>               | R97                              |                                        | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| Н                                     | 15 minutes <sup>1</sup>               | R98*                             | Kyooma                                 | Private Agreement                      |  |  |  |  |  |
| I                                     | 60 minutes <sup>2</sup>               | R57                              | Kurrara Street <sup>®</sup>            | 60 minutes as per EPL 12290            |  |  |  |  |  |
| J                                     | 15 minutes <sup>1</sup>               |                                  | Coronation Avenue <sup>@</sup>         | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| ĸ                                     | 15 minutes <sup>1</sup>               | R20*                             | Tonsley Park                           | Private Agreement                      |  |  |  |  |  |
|                                       |                                       | R21*                             | Alco Park                              | r iivale Agreement                     |  |  |  |  |  |
| L                                     | 15 minutes <sup>1</sup>               | R103                             |                                        | PA10_0059 Private Property outside NMZ |  |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

- NMZ Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);
- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

#### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is





required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

#### Measurement Analysis

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather station.

#### WCC Operations

WCC operations on 17<sup>th</sup> December 2012 had the 3600 and PC4000 excavators in Strip 13 at RL370m and one 1900 excavator in Strip 11 centre at RL300m and the other 1900 in Strip 12 centre at RL340m. The 3600 and PC4000 truck fleets were running to the RL445m dump during both day and night shifts, and the two 1900 truck fleets were either coaling up to the ROM Pad at RL380m or the western dump at RL390m both day and night shift. Scraper operations were moving overburden from Strip 14 to the LOM Visual Bund at RL410m. The crushing plant operated to 3:30am with one train loaded commencing at 11:25pm and finished at 1:44am.

#### Noise Compliance Assessment

The results shown in **Tables 2** and **3** indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period.



|          | $\wedge$     |
|----------|--------------|
| SPECTRUM |              |
|          | $\mathbb{V}$ |

| Table 2                                               |          |        |           |                     |            |                                                   |  |  |  |  |
|-------------------------------------------------------|----------|--------|-----------|---------------------|------------|---------------------------------------------------|--|--|--|--|
| WCC Noise Monitoring Results – 17 December 2012 (Day) |          |        |           |                     |            |                                                   |  |  |  |  |
|                                                       |          | dB(A), | Criterion | Inversion           | Wind       |                                                   |  |  |  |  |
| Location                                              | Time     | Leq    | dB(A) Leq | <sup>o</sup> C/100m | speed/ dir | Identified Noise Sources                          |  |  |  |  |
| A R5 Rosehill                                         | 4:35 pm  | 36     | 35        | n/a                 | 6.4 / 143  | Birds & insects (36), WCC inaudible               |  |  |  |  |
| B1 R7 83 Wadwells                                     | 3:29 pm  | 41     | 37        | n/a                 | 4.2 / 150  | Birds & wind (40), tractor (33), WCC inaudible    |  |  |  |  |
| Lane/R8 Almawillee                                    |          |        |           |                     |            |                                                   |  |  |  |  |
| B2 R9Gedhurst/ R22                                    | 2:23 pm  | 42     | 37/36*    | n/a                 | 2 / 155    | Birds & wind (42), WCC inaudible                  |  |  |  |  |
| Mountain View                                         |          |        |           |                     |            |                                                   |  |  |  |  |
| C R10 Meadholme/                                      | 5:02 pm  | 38     | 39        | n/a                 | 8.1 / 133  | Birds & insects (37), WCC (30)                    |  |  |  |  |
| R11 Glenara                                           |          |        |           |                     |            |                                                   |  |  |  |  |
| D R24 Hazeldene                                       | 1:18 pm  | 38     | 37        | n/a                 | 3 / 154    | Traffic (37), birds & insects (31), WCC inaudible |  |  |  |  |
| E R12 Railway Cottage                                 | 4:05 pm  | 44     | 38        | n/a                 | 3 / 167    | Traffic (43), birds & insects (38), WCC inaudible |  |  |  |  |
| F R96 Talavera                                        | 12:02 pm | 42     | 38        | n/a                 | 4.7 / 148  | Wind (39), insects (35), traffic (33), WCC (<20)  |  |  |  |  |
| <b>G</b> R97                                          | 1:26 pm  | 37     | 35        | n/a                 | 3 / 154    | Wind (36), traffic (31), WCC (<25)                |  |  |  |  |
| H R98 Kyooma                                          | 1:08 pm  | 42     | 36        | n/a                 | 3.8 / 170  | Wind (39), birds (36), WCC (32)                   |  |  |  |  |
| I R57 Kurrara St                                      | 2:12 pm  | 55     | 35        | n/a                 | 4.2 / 137  | Traffic (52), birds (52), WCC inaudible           |  |  |  |  |
| J R57 Coronation Ave                                  | 1:50 pm  | 47     | 35        | n/a                 | 2.7 / 144  | Traffic (46), wind (40), WCC inaudible            |  |  |  |  |
| K R20 Tonsley Park/                                   | 3:18 pm  | 43     | 39        | n/a                 | 4.5 / 153  | Traffic (40), wind (40), WCC inaudible            |  |  |  |  |
| R21 Alco Park                                         |          |        |           |                     |            |                                                   |  |  |  |  |
| L R103                                                | 3:37 pm  | 45     | 35        | n/a                 | 3.7 / 139  | Dogs (43), train (39), WCC inaudible              |  |  |  |  |

Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

| Table 3                                                            |          |                                     |               |                        |                                  |                    |                                                   |  |  |  |
|--------------------------------------------------------------------|----------|-------------------------------------|---------------|------------------------|----------------------------------|--------------------|---------------------------------------------------|--|--|--|
| WCC Noise Monitoring Results – 17/18 December 2012 (Evening/Night) |          |                                     |               |                        |                                  |                    |                                                   |  |  |  |
| Location                                                           | Time     | dB(A),<br>L1<br>(1min) <sup>1</sup> | dB(A),<br>Leq | Criterion<br>dB(A) Leq | Inversion<br><sup>o</sup> C/100m | Wind<br>speed/ dir | Identified Noise Sources                          |  |  |  |
| A R5 Rosehill                                                      | 8:37 pm  | n/a                                 | 37            | 35                     | -0.5                             | 6.6 / 130          | Pump (35), dogs (31), traffic (25), WCC inaudible |  |  |  |
| B1 R7 83 Wadwells Lane/R8 Almawillee                               | 8:59 pm  | n/a                                 | 38            | 37                     | 0.1                              | 5 / 108            | Birds & insects (38), traffic (26), WCC (<25)     |  |  |  |
| B2 R9Gedhurst/ R22<br>Mountain View                                | 11:16 pm | n/a                                 | 32            | 37/36*                 | 0.5                              | 3.7 / 128          | Insects (32), WCC inaudible                       |  |  |  |
| C R10 Meadholme/<br>R11 Glenara                                    | 10:08 pm | n/a                                 | 33            | 39                     | 1.2                              | 4.6 / 120          | Insects (32), traffic (28), WCC inaudible         |  |  |  |
| D R24 Hazeldene                                                    | 12:21 am | 31                                  | 51            | 37                     | 1.0                              | 3.7 / 129          | Insects (30), traffic (23), WCC inaudible         |  |  |  |
| E R12 Railway Cottage                                              | 10:56 pm | <30                                 | 40            | 38                     | 0.9                              | 3.7 / 124          | Train (57), traffic (36), WCC (<25)               |  |  |  |
| F R96 Talavera                                                     | 7:38 pm  | <35                                 | 41            | 37                     | -0.1                             | 4.3 / 134          | Traffic (40), train (33), WCC (<30)               |  |  |  |
| <b>G</b> R97                                                       | 9:10 pm  | <30                                 | 40            | 35                     | 0.5                              | 3.8 / 109          | Insects (39), wind (32), WCC (<25)                |  |  |  |
| H R98 Kyooma                                                       | 8:50 pm  | <35                                 | 37            | 36                     | -0.5                             | 5 / 108            | Birds & insects (36), wind (31), WCC (<30)        |  |  |  |
| I R57 Kurrara St                                                   | 9:44 pm  | <30                                 | 50            | 35                     | 0.9                              | 3.9 / 128          | Frogs (45), traffic (44), trains (44), WCC (<25)  |  |  |  |
| J R57 Coronation Ave                                               | 9:24 pm  | <35                                 | 40            | 35                     | 0.3                              | 4.5 / 112          | Wind (37), trains (33), insects (30), WCC (<30)   |  |  |  |
| K R20 Tonsley Park/<br>R21 Alco Park                               | 8:11 pm  | <30                                 | 46            | 37                     | -0.5                             | 4.9 / 136          | Insects (45), wind (38), traffic (30), WCC (25)   |  |  |  |
| L R103                                                             | 7:48 pm  | n/a                                 | 42            | 35                     | -0.2                             | 4.3 / 134          | Train (40), wind (36), WCC inaudible              |  |  |  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.



Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

#### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in Appendix III.

We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Pont

Neil Pennington Acoustical Consultant

Review:

Car

Ross Hodge Acoustical Consultant



SPECTRUM COUSTICS

# Appendix I



Attended Noise Monitoring Locations




### Appendix II

Noise Limits

|                                   | Location                   | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|-----------------------------------|----------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|                                   | Location                   | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7                                | 83 Wadwells Lane           | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9                                | "Gedhurst"                 | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12 "Quipolly Railway<br>Cottage" |                            | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22                               | "Mountain View"            | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24                               | "Hazeldene"                | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96                               | "Talavera" <sup>#</sup>    | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c                             | other privately-owned land | 35                         | 35                         | 45                    | 35                          | 40                         |

### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |
|-----|----------------|-----------------------------------|-----------------------------------------|
| R8  | "Almawillee"   | 40                                | 45                                      |
| R10 | "Meadholme"    | 40                                | 45                                      |
| R11 | "Glenara"      | 40                                | 45                                      |
| R20 | "Tonsley Park" | 40                                | 45                                      |
| R21 | "Alco Park"    | 40                                | 45                                      |
| R98 | "Kyooma"       | 40                                | 45                                      |

### Table 21: Properties with Private Agreements Noise Criteria





### Appendix III

Plant Sound Power Levels

| Plant Item                                                  |       | EA S                      | WLs                       |            | dB(A)      | Data Maggurad |
|-------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|
| Туре                                                        | No.   | Leq                       | Lmax                      | ub(A) Leq  | Lmax       | Date measured |
| Haul truck CAT 785C<br>(unattenuated)                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |
| Haul truck CAT 785C<br>(attenuated)                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |
| Water Cart                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |
| Scraper                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |
| Excavator (PC 3600)                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |
| Dozer                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |
| Crushing Plant                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |
| Haul truck CAT 785C<br>Horn pre attenuation                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |
| Haul truck Cat 785C<br>Horn post attenuation                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |
| Haul truck CAT 793XQ                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |
| Excavator (PC4000)                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.



18 January 2013

Ref: 04035/4643

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

### RE: JANUARY 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Wednesday 16<sup>th</sup> January, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendix 1**.

|                  |                                       |      | Table 1                        |                                        |  |  |  |  |  |  |  |  |  |
|------------------|---------------------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|--|--|--|--|--|
|                  | WCC Attended Noise Monitoring Program |      |                                |                                        |  |  |  |  |  |  |  |  |  |
| Monitoring Point | Duration                              | ID   | Receiver                       | Relevant Monitoring Requirements       |  |  |  |  |  |  |  |  |  |
| A                | 15 minutes <sup>1</sup>               | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |  |  |
| B1               | $60 \text{ minutes}^2$                | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |  |  |
|                  | 00 minutes                            | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |  |  |  |  |  |
| B2               | $60 \text{ minutes}^2$                | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |  |  |
| DZ               | 00 minutes                            | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |  |  |
| C                | 15 minutos <sup>1</sup>               | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |  |  |  |  |  |
| U U              | 15 111110165                          | R11* | Glenara                        | r IIvale Agreement                     |  |  |  |  |  |  |  |  |  |
| D                | 60 minutes <sup>2</sup>               | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |  |  |
| E                | 60 minutes <sup>2</sup>               | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |  |  |
| F                | 60 minutes <sup>2</sup>               | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |  |  |
| G                | 15 minutes <sup>1</sup>               | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |  |  |
| Н                | 15 minutes <sup>1</sup>               | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |  |  |  |  |  |
| I                | 60 minutes <sup>2</sup>               | R57  | Kurrara Street <sup>®</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |  |  |
| J                | 15 minutes <sup>1</sup>               |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |  |  |
| ĸ                | 15 minutes <sup>1</sup>               | R20* | Tonsley Park                   | Mine Owned                             |  |  |  |  |  |  |  |  |  |
|                  |                                       | R21* | Alco Park                      |                                        |  |  |  |  |  |  |  |  |  |
| L                | 15 minutes <sup>1</sup>               | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is



required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

### Measurement Analysis

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather stations. The lower temperature probe at the weather station was not operational on the 16<sup>th</sup> January so temperature inversion strength was interpreted from the 10m probe at the weather station and a temperature probe at Quipolly, a vertical separation of 96.3m.

### WCC Operations

WCC operations on 16<sup>th</sup> January 2013 had the 3600 and a 1900 excavator in Strip 12 east at RL320m and PC4000 and a 1900 excavator in Strip 13 west at RL390m. All overburden truck fleets were running to the RL430m western dump on day shift and to the RL390m western dump on night shift. Coal truck fleets ran from in pit to the ROM Pad at RL380m. Scraper operations were moving overburden from Strip 15 to the LOM Visual Bund at RL410m on the eastern side of the mine on day shift only. The crushing plant operated to 3:30am with one train loaded commencing at 3:29am and finished at 5:44am.

### Noise Compliance Assessment

The results shown in **Tables 2** and **3** indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period.



|                       |                                                      |        |           | Table 2             |            |                                                     |  |  |  |  |  |  |  |  |
|-----------------------|------------------------------------------------------|--------|-----------|---------------------|------------|-----------------------------------------------------|--|--|--|--|--|--|--|--|
|                       | WCC Noise Monitoring Results – 16 January 2013 (Day) |        |           |                     |            |                                                     |  |  |  |  |  |  |  |  |
|                       |                                                      | dB(A), | Criterion | Inversion           | Wind       |                                                     |  |  |  |  |  |  |  |  |
| Location              | Time                                                 | Leq    | dB(A) Leq | <sup>o</sup> C/100m | speed/ dir | Identified Noise Sources                            |  |  |  |  |  |  |  |  |
| A R5 Rosehill         | 2:43 pm                                              | 55     | 35        | n/a                 | 1.9/254    | Birds & insects (55), traffic (32), WCC inaudible   |  |  |  |  |  |  |  |  |
| B1 R7 83 Wadwells     | 1:40 pm                                              | 48     | 37        | n/a                 | 1.9/272    | Birds & insects (47), traffic (41), WCC inaudible   |  |  |  |  |  |  |  |  |
| Lane/R8 Almawillee    |                                                      |        |           |                     |            |                                                     |  |  |  |  |  |  |  |  |
| B2 R9Gedhurst/ R22    | 1:39 pm                                              | 42     | 37/36*    | n/a                 | 1.9/272    | Birds & insects (42), traffic (30), WCC inaudible   |  |  |  |  |  |  |  |  |
| Mountain View         |                                                      |        |           |                     |            |                                                     |  |  |  |  |  |  |  |  |
| C R10 Meadholme/      | 3:07 pm                                              | 45     | 39        | n/a                 | 1.5/299    | Birds & insects (45), WCC (<25)                     |  |  |  |  |  |  |  |  |
| R11 Glenara           |                                                      |        |           |                     |            |                                                     |  |  |  |  |  |  |  |  |
| D R24 Hazeldene       | 3:25 pm                                              | 36     | 37        | n/a                 | 0.7/123    | Birds & insects (34), traffic (30), WCC (25)        |  |  |  |  |  |  |  |  |
| E R12 Railway Cottage | 5:00 pm                                              | 39     | 38        | n/a                 | 2.4/47     | Traffic (38), birds & insects (32), WCC inaudible   |  |  |  |  |  |  |  |  |
| F R96 Talavera        | 2:45 pm                                              | 40     | 38        | n/a                 | 1.3/294    | Birds & insects (40), WCC (20)                      |  |  |  |  |  |  |  |  |
| <b>G</b> R97          | 4:10 pm                                              | 34     | 35        | n/a                 | 1.9/127    | Birds & insects (34), WCC (17)                      |  |  |  |  |  |  |  |  |
| H R98 Kyooma          | 3:50 pm                                              | 32     | 36        | n/a                 | 1.0/150    | Birds & insects (32), WCC (19)                      |  |  |  |  |  |  |  |  |
| I R57 Kurrara St      | 4:48 pm                                              | 46     | 35        | n/a                 | 2.1/120    | Traffic (42), train (41), birds & insects (40), WCC |  |  |  |  |  |  |  |  |
|                       |                                                      |        |           |                     |            | inaudible                                           |  |  |  |  |  |  |  |  |
| J R57 Coronation Ave  | 4:30 pm                                              | 46     | 35        | n/a                 | 0.3/74     | Traffic (43), birds & insects (43), WCC inaudible   |  |  |  |  |  |  |  |  |
| L R103                | 4:35 pm                                              | 36     | 35        | n/a                 | 0.3/74     | Train (36), WCC inaudible                           |  |  |  |  |  |  |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

|                                         |                                                                |                                     |               |                        | Table 3                          |                    |                                                                    |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------|-------------------------------------|---------------|------------------------|----------------------------------|--------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                         | WCC Noise Monitoring Results – 16 January 2013 (Evening/Night) |                                     |               |                        |                                  |                    |                                                                    |  |  |  |  |  |  |  |
| Location                                | Time                                                           | dB(A),<br>L1<br>(1min) <sup>1</sup> | dB(A),<br>Leq | Criterion<br>dB(A) Leq | Inversion<br><sup>o</sup> C/100m | Wind<br>speed/ dir | Identified Noise Sources                                           |  |  |  |  |  |  |  |
| A R5 Rosehill                           | 9:10 pm                                                        | 37                                  | 47            | 35                     | +2.8                             | 2.6/85             | Birds & insects (47), traffic (32), WCC (28)                       |  |  |  |  |  |  |  |
| B1 R7 83 Wadwells<br>Lane/R8 Almawillee | 10:55 pm                                                       | 43                                  | 42            | 37                     | +4.2                             | 2.7/87             | Insects (41), WCC (35)                                             |  |  |  |  |  |  |  |
| B2 R9Gedhurst/ R22<br>Mountain View     | 8:07 pm                                                        | 44                                  | 44            | 37/36*                 | +2.6                             | 3.2/69             | Birds & insects (43), WCC (37)                                     |  |  |  |  |  |  |  |
| C R10 Meadholme/<br>R11 Glenara         | 9:30 pm                                                        | 43                                  | 39            | 39                     | +3.3                             | 2.3/85             | Insects (37), WCC (34)                                             |  |  |  |  |  |  |  |
| D R24 Hazeldene                         | 9:48 am                                                        | 40                                  | 51            | 37                     | +3.6                             | 2.6/90             | Insects (51), traffic (38), WCC (32)                               |  |  |  |  |  |  |  |
| E R12 Railway Cottage                   | 10:50 pm                                                       | 35                                  | 46            | 38                     | +4.2                             | 2.7/87             | Traffic (45), insects (35), WCC (28)                               |  |  |  |  |  |  |  |
| F R96 Talavera                          | 7:40 pm                                                        | 35                                  | 33            | 37                     | +0.6                             | 3.4/63             | Birds & insects (31), WCC (30)                                     |  |  |  |  |  |  |  |
| <b>G</b> R97                            | 9:02 pm                                                        | 37                                  | 39            | 35                     | +3.2                             | 2.7/84             | Insects (38), WCC (32)                                             |  |  |  |  |  |  |  |
| H R98 Kyooma                            | 8:44 pm                                                        | 39                                  | 36            | 36                     | +3.3                             | 2.6/85             | Insects (34), WCC (32)                                             |  |  |  |  |  |  |  |
| I R57 Kurrara St                        | 9:43 pm                                                        | n/a                                 | 46            | 35                     | +3.6                             | 2.6/90             | Frogs (42), insects (40), traffic (39), trains (39), WCC inaudible |  |  |  |  |  |  |  |
| J R57 Coronation Ave                    | 9:22 pm                                                        | n/a                                 | 44            | 35                     | +3.3                             | 2.6/85             | Traffic (42), trains (40), insects (33), WCC inaudible             |  |  |  |  |  |  |  |
| L R103                                  | 7:43 pm                                                        | n/a                                 | 40            | 35                     | +0.9                             | 3.7/59             | Train (40), birds (30), WCC inaudible                              |  |  |  |  |  |  |  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

The results shown in Table 3 indicate that, under the operational and atmospheric conditions at the time, noise emission from WCC exceeded the criterion of 36 dB(A) Leq at the Mountain View (Gedhurst) monitoring location during the evening/night monitoring period.





WCC environmental licence conditions indicate that compliance with noise emission criteria is not applicable under atmospheric conditions where winds speeds are higher than 3m/s and/or there is a temperature inversion of greater than  $+3^{\circ}$  C/100m. Data from the mine operated weather station indicated that the elevated noise level was measured whilst the wind was at 3.2m/s and, therefore, under non-compliant atmospheric conditions.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in Appendix III.



We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Parif

Neil Pennington Acoustical Consultant

Review:

1fach-Cass

Ross Hodge Acoustical Consultant



SPECTRUM COUSTICS

### Appendix I



Attended Noise Monitoring Locations





### Appendix II

Noise Limits

|                                   | Location                   | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|-----------------------------------|----------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|                                   | Location                   | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7                                | 83 Wadwells Lane           | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9                                | "Gedhurst"                 | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12 "Quipolly Railway<br>Cottage" |                            | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22                               | "Mountain View"            | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24                               | "Hazeldene"                | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96                               | "Talavera" <sup>#</sup>    | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c                             | other privately-owned land | 35                         | 35                         | 45                    | 35                          | 40                         |

### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |
|-----|----------------|-----------------------------------|-----------------------------------------|
| R8  | "Almawillee"   | 40                                | 45                                      |
| R10 | "Meadholme"    | 40                                | 45                                      |
| R11 | "Glenara"      | 40                                | 45                                      |
| R20 | "Tonsley Park" | 40                                | 45                                      |
| R21 | "Alco Park"    | 40                                | 45                                      |
| R98 | "Kyooma"       | 40                                | 45                                      |

### Table 21: Properties with Private Agreements Noise Criteria



### Appendix III

Plant Sound Power Levels

| Plant Item                                                  |       | EA S                      | WLs                       | dP(A) Log  | dB(A)      | Data Massurad |
|-------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|
| Туре                                                        | No.   | Leq                       | Lmax                      | ab(A) Leq  | Lmax       | Date measured |
| Haul truck CAT 785C<br>(unattenuated)                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |
| Haul truck CAT 785C<br>(attenuated)                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |
| Water Cart                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |
| Scraper                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |
| Excavator (PC 3600)                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |
| Dozer                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |
| Crushing Plant                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |
| Haul truck CAT 785C<br>Horn pre attenuation                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |
| Haul truck Cat 785C<br>Horn post attenuation                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |
| Haul truck CAT 793XQ                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |
| Excavator (PC4000)                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.

## Appendix 5 – Blasting Monitoring Results

#### WERRIS CREEK COAL BLASTING DATABASE

| Chet    |            |            |                                     |         |            |         | WERRIS C   | REEK CO  | AL BLASTI  | NG RESUI | TS NOVEN   | IBER 2012 |            |         |
|---------|------------|------------|-------------------------------------|---------|------------|---------|------------|----------|------------|----------|------------|-----------|------------|---------|
| Shot    | Date fired | Time Fired | Location                            | Туре    | Glena      | la R11  | Tonsley    | Park R20 | Werris C   | reek R62 | Talave     | ra R96    | COMPL      | IANCE   |
| number  |            |            |                                     |         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)   | Vib (mm/s) | OP (dB) |
| 2012-61 | 2/11/2012  | 12:08      | S14_8-10_370                        | OB      | <0.08      | <109.0  | 0.51       | 103.0    | <0.08      | <109.0   | 0.11       | 101.0     | 10.00      | 120.0   |
| 2012-62 | 5/11/2012  | 12:11      | S14_3-5_375                         | OB      | <0.08      | <109.0  | 0.93       | 100.0    | 0.26       | 99.0     | 0.16       | 102.0     | 10.00      | 120.0   |
| 2012-63 | 9/11/2012  | 12:17      | S14_11-14_370                       | OB      | 0.11       | 102.0   | 0.67       | 105.0    | <0.08      | <109.0   | 0.23       | 102.0     | 10.00      | 120.0   |
| 2012-64 | 13/11/2012 | 12:13      | S11_17-18_302                       | IB      | <0.08      | <109.0  | 0.13       | 115.0    | <0.08      | <109.0   | <0.08      | <109.0    | 10.00      | 120.0   |
| 2012-65 | 14/11/2012 | 12:26      | S13_15-18_370                       | OB      | 0.13       | 106.0   | <0.08      | <109.0   | 0.29       | 99.5     | 0.28       | 104.0     | 10.00      | 120.0   |
| 2012-66 | 14/11/2012 | 12:26      | S14_12_385                          | OB      | 0.13       | 106.0   | <0.08      | <109.0   | 0.29       | 99.5     | 0.28       | 104.0     | 10.00      | 120.0   |
| 2012-67 | 19/11/2012 | 10:17      | S13_14-16_370                       | OB      | 0.08       | 103.0   | 0.68       | 102.0    | 0.20       | 102.0    | 0.13       | 107.0     | 10.00      | 120.0   |
| 2012-68 | 22/11/2012 | 12:13      | S13_17-21_370                       | OB      | 0.14       | 99.0    | 0.71       | 100.2    | 0.26       | 99.5     | 0.23       | 105.0     | 10.00      | 120.0   |
| 2012-69 | 30/11/2012 | 12:28      | S11_12-17_Fcoal east + Gcoal PS pt1 | TSB     | 0.22       | 102.0   | 0.83       | 111.9    | 0.62       | 111.0    | 0.43       | 106.0     | 10.00      | 120.0   |
| TOTALS  | NOVEMBER   | # BLAST    | 9                                   | AVERAGE | 0.14       | 103.0   | 0.64       | 105.3    | 0.32       | 101.8    | 0.23       | 103.9     | 5.00       | 115.0   |
| TOTALS  | NOVEMBER   | # BLAST    | 9                                   | HIGHEST | 0.22       | 106.0   | 0.93       | 115.0    | 0.62       | 111.0    | 0.43       | 107.0     | 10.00      | 120.0   |
| TOTALS  | ANNUAL     | # BLAST    | 55                                  | AVERAGE | 0.22       | 105.5   | 0.90       | 101.7    | 0.39       | 100.2    | 0.23       | 105.3     | 5.00       | 115.0   |
| TOTALS  | ANNUAL     | %          | >115dB(L) or 5mm/s                  | 55      | 0%         | 0%      | 0%         | 0%       | 0%         | 0%       | 0%         | 0%        | 5%         | 5%      |

### WERRIS CREEK COAL BLASTING DATABASE

| Shot    |            | Time    |                                          |         | WERRIS CREEK COAL BLASTING RESULTS DECEMBER 2012 |         |            |          |            |          |            |         |            |         |
|---------|------------|---------|------------------------------------------|---------|--------------------------------------------------|---------|------------|----------|------------|----------|------------|---------|------------|---------|
| Shot    | Date fired | Fired   | Location                                 | Туре    | Glena                                            | la R11  | Tonsley    | Park R20 | Werris C   | reek R62 | Talave     | ra R96  | COMPL      | IANCE   |
| number  |            | Theu    |                                          |         | Vib (mm/s)                                       | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB) |
| 2012-70 | 5/12/2012  | 9:06    | S12_11_Decoal                            | IB      | <0.08                                            | <109.0  | <0.08      | <109.0   | <0.08      | <109.0   | <0.08      | <109.0  | 10.00      | 120.0   |
| 2012-71 | 7/12/2012  | 12:17   | S11_12-17_Fcoal west + S11 G coal PS pt2 | IB      | 0.33                                             | 103.0   | 0.87       | 99.5     | 0.61       | 97.5     | 0.44       | 102.0   | 10.00      | 120.0   |
| 2012-72 | 12/12/2012 | 12:35   | S12_18_Ccoal pt1                         | IB      | 0.13                                             | 104.0   | 0.66       | 103.0    | 0.35       | 82.9     | 0.66       | 102.1   | 10.00      | 120.0   |
| 2012-73 | 12/12/2012 | 12:35   | S14_19-21_370                            | OB      | 0.13                                             | 104.0   | 0.66       | 103.0    | 0.35       | 82.9     | 0.66       | 102.1   | 10.00      | 120.0   |
| 2012-74 | 14/12/2012 | 12:21   | S14_7_Decoal UG collapse                 | TSB     | <0.08                                            | <109.0  | 0.43       | 96.3     | <0.08      | <109.0   | 0.57       | 106.3   | 10.00      | 120.0   |
| 2012-75 | 21/12/2012 | 12:35   | S12_5-7_310 TSB26                        | TSB     | 0.24                                             | 101.0   | <0.08      | <109.0   | <0.08      | <109.0   | 0.32       | 99.5    | 10.00      | 120.0   |
| TOTALS  | DECEMBER   | # BLAST | 6                                        | AVERAGE | 0.21                                             | 103.0   | 0.66       | 100.5    | 0.44       | 87.8     | 0.53       | 102.4   | 5.00       | 115.0   |
| TOTALS  | DECEMBER   | # BLAST | 6                                        | HIGHEST | 0.33                                             | 104.0   | 0.87       | 103.0    | 0.61       | 97.5     | 0.66       | 106.3   | 10.00      | 120.0   |
| TOTALS  | ANNUAL     | # BLAST | 61                                       | AVERAGE | 0.22                                             | 105.1   | 0.87       | 101.5    | 0.39       | 98.6     | 0.27       | 104.9   | 5.00       | 115.0   |
| TOTALS  | ANNUAL     | %       | >115dB(L) or 5mm/s                       | 61      | 0%                                               | 0%      | 0%         | 0%       | 0%         | 0%       | 0%         | 0%      | 5%         | 5%      |

### WERRIS CREEK COAL BLASTING DATABASE

| Chet   |            | Time    |                              |         |            |         | WERRIS     | CREEK CO | OAL BLAST  | ING RESU | LTS JANUA  | TS JANUARY 2013 |            |         |
|--------|------------|---------|------------------------------|---------|------------|---------|------------|----------|------------|----------|------------|-----------------|------------|---------|
| Shot   | Date fired | Fired   | Location                     | Туре    | Glena      | ra R11  | Tonsley    | Park R20 | Werris C   | reek R62 | Talave     | ra R96          | COMPL      |         |
| number |            | Theu    |                              |         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)         | Vib (mm/s) | OP (dB) |
|        | 7/01/2013  | 15:10   | S14_22-23_385                |         | <0.08      | <109.0  | <0.08      | <109.0   | <0.08      | <109.0   | <0.08      | <109.0          | 10.00      | 120.0   |
|        | 8/01/2013  | 12:33   |                              |         | <0.25      | <110.0  | 1.15       | 102.6    | 0.87       | 101.5    | 0.41       | 110.8           | 10.00      | 120.0   |
|        | 11/01/2013 |         | s12_9_11_fcoal               |         | <0.08      | <109.0  | <0.08      | <109.0   | 0.29       | 101.5    | <0.08      | <109.0          | 10.00      | 120.0   |
|        | 17/01/2013 |         | S11_12-17_280 pt2            |         | 0.21       | 108.0   | 0.79       | 106.0    | 0.63       | 101.5    | 0.37       | 108.0           | 10.00      | 120.0   |
|        | 21/01/2013 |         | S12_15-17_Ccoal              |         | <0.08      | <109.0  | <0.08      | <109.0   | 0.40       | 94.4     | <0.08      | <109.0          | 10.00      | 120.0   |
|        | 24/01/2013 | 13:09   | S15_6_385 DEcoal UG collapse |         | <0.08      | <109.0  | <0.08      | <109.0   | <0.08      | <109.0   | <0.08      | <109.0          | 10.00      | 120.0   |
|        | 30/01/2013 |         | S12_13-14_Ccoal pt1          |         | 0.10       | 94.0    | <0.08      | <109.0   | <0.08      | <109.0   | <0.08      | <109.0          | 10.00      | 120.0   |
| TOTALS | JANUARY    | # BLAST | 7                            | AVERAGE | 0.16       | 101.0   | 0.97       | 104.3    | 0.55       | 99.7     | 0.39       | 109.4           | 5.00       | 115.0   |
| TOTALS | JANUARY    | # BLAST | 7                            | HIGHEST | 0.21       | 108.0   | 1.15       | 106.0    | 0.87       | 101.5    | 0.41       | 110.8           | 10.00      | 120.0   |
| TOTALS | ANNUAL     | # BLAST | 68                           | AVERAGE | 0.21       | 105.1   | 0.88       | 101.8    | 0.41       | 98.8     | 0.29       | 105.4           | 5.00       | 115.0   |
| TOTALS | ANNUAL     | %       | >115dB(L) or 5mm/s           | 68      | 0%         | 0%      | 0%         | 0%       | 0%         | 0%       | 0%         | 0%              | 5%         | 5%      |

## Appendix 6 – Groundwater Monitoring Results

## FIELD SAMPLING SHEET - SURFACE & GROUND WATERS

CLIENT: WERRIS CREEK COAL PTY LTD

ADDRESS/OFFICE:

PROJECT ID: WERRIS CREEK COAL QUARTERLY GROUNDWATERS

SAMPLER NAME:

SITE: WERRIS CREEK MINE AND SURROUNDS

|                 | the second second      | on        | 1000   | Bore Data               |                       |          | Sampling Data    |                 |                    | Field Tests |            | Field Observations |            |      |    |
|-----------------|------------------------|-----------|--------|-------------------------|-----------------------|----------|------------------|-----------------|--------------------|-------------|------------|--------------------|------------|------|----|
| bles / Analytes | Sample ID / Bore<br>ID | Date      | Time   | Standing<br>Waţer Level | Bore depth            | Stick up | Purge Type       | Purge<br>Volume | Pump Set<br>Depth  | EC - field  | pH - field | Temp - field       | Appearance | Odor |    |
| Reporta         |                        |           | (24hr) | mbgl<br>mbtoc<br>m      | ⊡mbgl<br>⊡mbtoc<br>⊡m | m        | Pump /<br>Bailer | L               | mbgl<br>mbtoc<br>m | uS/cm       | pH units   | °C                 |            |      |    |
|                 | MW8                    | 16/11/2   | 10-30  | 14.2                    | 7                     | 0.2      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW12                   | 16/11/12  | 13:20  | 4.55                    |                       | 6.5      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW13                   | 16/11/12  | 10:45  | 4-74                    |                       | 0.4      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW13B                  | 16/11/12  | 11.00  | 3-28                    |                       | 0.3      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW13D                  | 16/11/12  | 11:15  | 4.86                    |                       | 0.2      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW15                   | 16/11/12  | 12:00  | 4.26                    |                       | 0.5      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW16                   | 16/11/12- | 12:50  | 4.41                    |                       | 0.3      |                  |                 |                    |             |            |                    |            |      |    |
| •               | MW17A                  | 16/11/12  | 12:15  | 3-87                    |                       | 0.5      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW18A                  | 16/11/12  | 12:40  | 3.55                    |                       | -        |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW19A                  | 16/11/12  | 10-40  | 5.85                    |                       | 0.15     |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW21A                  | 21/11/12  | 13:10  | 6.70                    |                       | 0.3      |                  |                 |                    |             |            |                    |            |      | -k |
|                 | MW22A                  | 16/11/12  | 13:00  | 4.79                    |                       | 0.55     |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW22B                  | 16/11/12  | 13:10  | 5.02                    |                       | 0.45     |                  |                 |                    |             |            |                    |            |      |    |
| -               | MW23A                  | 16/11/12  | 11:25  | 3.70                    |                       | 0.2      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW23B                  | 16/11/12  | 11:50  | 4-21                    |                       | 0.1      |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW28A                  | 16/11/2   | 13:40  | 10.67                   |                       | 0.25     |                  |                 |                    |             |            |                    |            |      |    |
|                 | MW28B                  | 16/11/2   | 13)45  | -                       |                       | 0.8      |                  | TAP             | - 1                | mp over     | bare       | NO SI              | NL.        |      |    |
| SPECIAI         | COMMENTS:              | M         |        |                         |                       |          |                  |                 |                    |             |            |                    |            |      |    |

|   | QUOTATION No:                                             |
|---|-----------------------------------------------------------|
|   | ACIRL LABORATORY:                                         |
|   | Bi-Monthly Ground Waters - SWL (Standing Water Level Only |
| ~ |                                                           |
|   |                                                           |

ALS) Comments O 0 vereash Hazel dener - in lite shed Wodell lane. Junylong lone - opp. Hansled. Teryburg lane. - Wordmill Paynes Jane - Winduill Mountainview - Red Shed. 1955 Wadellare in sted. + 82 waal-Ref Re lane, » Lintana... pup. glenarer \$208 Paynes lare House 2303 Paynes larer Irrigation -Reag hasy yand. REAG Eusy Vaddoch. Lingat e windmill. LHS wood harry Wadlann 19000 Sheet: of

| LIEN             | T: WERRIS CREI                               | K COAL PT  | YLTD | 1.00         | • 4. J.                 |                 |          |                  |                 | ficial<br>In      | 5 T 10             | 1. A. 1. 1. 200 | QUOTATION No                                               | 1007 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 | · · · · · |            | - Constant |                  | VY0 -         |
|------------------|----------------------------------------------|------------|------|--------------|-------------------------|-----------------|----------|------------------|-----------------|-------------------|--------------------|-----------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|------------|------------|------------------|---------------|
| DDR              | ESS/OFFICE:                                  |            | 34   |              | 2-                      |                 |          |                  |                 |                   | ACIRL LABORATORY   |                 |                                                            |                                                                                                                  |           |            |            |                  | • • • •       |
| ROJ              | ECT ID: WERRIS                               | CREEK CO   |      | RTERLY GROUN | DWATERS                 |                 |          |                  |                 |                   |                    |                 | Bi-Monthly Ground Waters - SWL (Standing Water Level Only) |                                                                                                                  |           |            |            | (ALS)            |               |
|                  |                                              | 51         | h/1  | ips 1        | 1 Ct                    | fbar            | ve.      |                  |                 |                   | de la              |                 | Bottles (6 Month                                           | ttles (6 Monthly ONLY)- 1L Natural, Nutrients, TPH                                                               |           |            | ACIRL      | A start          |               |
|                  | Sample D Information Bore Data Sampling Data |            |      |              |                         |                 |          | Field Tests      | 1.2.96          |                   | Field Observations |                 | Comments                                                   |                                                                                                                  |           |            |            |                  |               |
| ables / Analyter | Sample ID / Bon<br>ID                        | Date       |      | Time         | Standing<br>Water Level | Bore depth      | Stick up | Purge Type       | Purge<br>Volume | Pump Set<br>Depth | EC - field         | pH - field      | Tamp - field                                               | Appearance                                                                                                       | Odor      | Colour     |            |                  | n<br>An teach |
| Report           |                                              | The second |      | (24hr)       | Imbgi<br>Imbtoc<br>Im   | Ombgl<br>Ombtoc | m        | Pump /<br>Bailer | L               | Cmbgl<br>Cmbtoc   | uS/or              | m pH units      | °C                                                         |                                                                                                                  |           |            |            |                  |               |
| 1.<br>N          | MW1                                          | 24/1/1     | 3    | 10:10        | \$3-8                   |                 | 0.75     |                  |                 |                   |                    | 0.2             |                                                            |                                                                                                                  |           |            | 6 Monthly  | H! Ilviens       | 12            |
|                  | MW2                                          | Ruli       | 3    | 10:20        | 26.14                   | ŝ.              | 0.15     |                  | ê.:             | 2                 |                    |                 | ě.                                                         |                                                                                                                  |           |            | 6 Monthly  | Railmanie        | 1 - E - B     |
| 50               | MW3                                          | 25/11      | (3   | 11000        | 15.6                    | •               | 0-94     |                  |                 |                   |                    |                 |                                                            |                                                                                                                  |           |            | 6 Monthly  | Emplaria         |               |
|                  | MW4                                          | 25/1       | 13   | 11-50        | 0.4                     | 0               |          | - 49)<br>-       | 4A              | Wai               | ter                | leine           | Ham                                                        | from                                                                                                             | anal      | dlace      | 6 Monthly  | Stiker           | mken.         |
|                  | MW4B                                         | 25/1       | B    | 11:40        | 11:12                   |                 | 0.7      | -                |                 |                   | ,                  |                 | locart                                                     |                                                                                                                  | 0         |            | 6 Monthly  | Mine             |               |
| -                | MW5                                          | 25/1       | B    | 11:20        | 43-76                   | 2               | 1.15     |                  |                 |                   | -                  |                 | - 6                                                        |                                                                                                                  |           |            | 6 Monthly  | Mine             |               |
| 5                | MW5B                                         | 25/1       | 3    | 11:30        | 6.2                     |                 | 07       | 2                |                 |                   | 1.0                |                 |                                                            |                                                                                                                  |           | 1          | d working  | Mine.            |               |
| 2                | MW6                                          | 2:4/1      | 12   | 10:40        | 12.41                   | d.              |          | 2.123            |                 |                   |                    |                 |                                                            |                                                                                                                  |           |            | 6 Monthly  | MUNE             | 2) -          |
|                  | MW9                                          | 25/        | 12   | 10.40        | 15.0                    | +               |          |                  |                 | 1                 | -                  |                 |                                                            |                                                                                                                  |           |            | o monany   |                  |               |
| 3                | MW10                                         | sali       | 2    | 9145         | The                     | 5               | 0.2      |                  | 1.12            |                   | 6                  |                 |                                                            |                                                                                                                  | 9         |            | Fer        | at Lang          |               |
|                  | MW11                                         | -          |      |              | 1100                    |                 |          | Ŷ                | Ring            | here              | 6                  |                 |                                                            | to                                                                                                               | lion      |            | 50.        | or jure          |               |
| 10               | MW14                                         | 25/1       | 13   | 10:30        | 17.0                    | 5               | 0.95     |                  |                 |                   | per                | ~C N            | auce                                                       |                                                                                                                  | i F       |            | mine       | - load out       |               |
| 0 =              | MW14B                                        | 25/1       | B    | 10:20        | 16-8                    |                 | 075      |                  | i G             |                   | 3                  |                 | 1.125                                                      | 1                                                                                                                |           |            | Mine.      | - m n            |               |
|                  | MW17B                                        | 24/1       | 13   | 12:30        | 11.49                   | 1               | .,       |                  | (               | Wind              | 11,~               | runner          | 1                                                          |                                                                                                                  | di i      | 1-1        | Lade       | ell la - Winhail | 1             |
|                  | MW20                                         | 24/1       | 12   | 9:00         | <b>A</b> .4             | 物产              | 0.05     |                  |                 |                   |                    |                 |                                                            |                                                                                                                  | 9         |            | # Ton      | day, Park - 9    | ed.           |
|                  | MW24A                                        | 24/1       | 3    | 14.10        | 13-40                   | a               | ols      |                  | 1               | 5.12              |                    | 2               | 17.14                                                      |                                                                                                                  |           |            | * Ma       | retae            |               |
| -                | MW25A                                        | 241        | 13   |              | -                       |                 |          |                  | No.             | ace               | 59                 | pump            | aver                                                       | berg                                                                                                             | -         |            |            | <u> </u>         | 2             |
| ÷                | MW25B                                        | 24/1       | 3    |              | -                       | 3               | o        |                  |                 |                   | 1. jr              | 1.1             |                                                            | 2.8                                                                                                              | S. 10     |            |            |                  | т.,           |
|                  | P1                                           | 251        | 13   | 10:50        | 3190                    | 5               | 69       |                  |                 |                   |                    | 1.00 g (1)      | 12                                                         |                                                                                                                  |           | 1          | Min        | e.               | 1             |
|                  | P2                                           |            | 1    |              |                         |                 |          |                  | No              | 1 N               | do.                |                 | hirab                                                      | · V                                                                                                              | S. 1      |            | Mine       | 2                |               |
| 45               | PUG                                          | -          |      |              |                         |                 | -96      | *                | Ande            | 2                 | to                 | manife          | "                                                          | Sec. 1                                                                                                           | 1         | ~          |            |                  |               |
|                  | MW27                                         | 200/1      | 13   | 9:55         | 40-75                   | ſ               | 0.45     |                  |                 |                   | 10                 | 100010          | Land Street                                                | al and a second                                                                                                  |           |            | Cintra     | - Exet In        |               |
| ð                | MW29                                         | 24         | 13   | 14:20        | 1650                    | >               | 0.35     | 1                | -               |                   |                    | (Wird           | millo                                                      | mpina                                                                                                            | )         | 10         | Xin        | ma - Win         | Sanil         |
| DECH             | MW31                                         | 2041       | B    | 14:00        |                         | 5               | )ry      |                  | 1.<br>1917 - 1  |                   |                    | i<br>Maria      |                                                            | 1)                                                                                                               | .)        | (1997)<br> | Tula       | Vera & Wind      | mill no       |

Dara con VHF 255

## FIELD SAMPLING SHEET - SURFACE & GROUND WATERS

CLIENT: WERRIS CREEK COAL PTY LTD

ADDRESS/OFFICE:

PROJECT ID: WERRIS CREEK COAL QUARTERLY GROUNDWATERS

SAMPLER NAME:

SITE: WERRIS CREEK MINE AND SURROUNDS

|                |                       | Sample ID | Informat | ion    | Bore Da                 |               |  |
|----------------|-----------------------|-----------|----------|--------|-------------------------|---------------|--|
| bies / Analyte | Sample ID / Bor<br>ID | Da        | te       | Time   | Standing<br>Water Level | Bore depth    |  |
| Raporta        |                       |           |          | (24hr) | Cmbgl<br>Cmbtoc         | Embg<br>mbtor |  |
|                | MW1                   | 21/11     | 12       | 2:35   | 53                      | 26            |  |
|                | MW2                   | 244       | 12       | 12.20  | 25-6                    | 8             |  |
|                | MW3                   | 21/11     | 12       | 11:10  | 15-5                    | R             |  |
|                | MW4                   | 21        | 1/12     | 12:05  | Dn                      | v             |  |
|                | MW4B                  | 21/1      | 12       | 11.55  | 10.8                    | 5             |  |
|                | MW5                   | 21/2      | 1/2      | 11:25  | 87                      | 5             |  |
|                | MW5B                  | 20/1      | 1/2      | 11:40  | 8.30                    | Þ             |  |
| 1              | MW6                   | 21/1      | 12       | 12:45  | 122                     | В             |  |
|                | MW9                   | 21/11     | 12       | 10:30  | 15.4                    | 3             |  |
|                | MW10                  | 211/11    | 12       | 9:30   | 17.9                    | 6             |  |
|                | MW11                  |           | 7        |        | -                       |               |  |
|                | MW14                  | 21 11     | 12       | 10:20  | 16-7                    | 5             |  |
|                | MW14B                 | 21        | 112      | 10:10  | 16.5                    | 2             |  |
| -              | MW17B                 | 16/1      | 12       | 12:25  | 9.9                     | B             |  |
|                | MW20                  | 25/11     | 112      | 9:15   | 19.1                    | 9             |  |
|                | MW24A                 | 21/11     | 12       | 13:30  | 13:12                   |               |  |
|                | MW25A                 | 21/1      | 12       |        | -                       |               |  |
|                | MW25B                 | 21.       | 12       |        | -                       |               |  |
|                | P1                    | 21/1      | 12       | 10.50  | 31-4                    | 5             |  |
|                | P2                    | -         | -        |        |                         |               |  |
|                | PUG                   | -         | -        |        |                         |               |  |
|                | MW27                  | 24 11     | 12       | 9:45   | 40                      | S             |  |
|                | MW29                  | 1611      | 12       | 1420   | 16-                     | 39            |  |
|                | MW31                  | 16/1      | 12       | 14:00  | 0                       | Dry           |  |
| SPECIA         | COMMENTS:             | M         | 1        |        |                         |               |  |
|                |                       |           |          |        |                         |               |  |

|          |                  | 63113           |                   |            |             |                 |            |
|----------|------------------|-----------------|-------------------|------------|-------------|-----------------|------------|
| t.       |                  |                 |                   |            |             | QUOTATION       | lo:        |
|          |                  |                 |                   |            |             | ACIRL LABOR     | ATOR       |
|          |                  |                 |                   |            |             | Bi-Monthly Grou | und W      |
|          |                  |                 |                   |            |             | Bottles (6 Mont | hly ON     |
|          | 51               | ampling Data    | 1                 |            | Field Tests |                 | 1          |
| Stick up | Purge Type       | Purge<br>Volume | Pump Set<br>Depth | EC - field | pH - field  | Temp - field    |            |
| m        | Pump /<br>Bailer | L .             | Embgl<br>Embtoc   | uS/cm      | pH units    | °C              |            |
|          |                  | 5               |                   |            |             |                 | Τ          |
| 0.15     |                  |                 |                   |            |             |                 |            |
| 0.95     |                  |                 |                   |            |             |                 |            |
|          |                  |                 |                   | "D         | yar         | block           | a          |
| 07       |                  |                 |                   |            |             |                 | K          |
| 1.15     |                  |                 |                   |            |             |                 |            |
| 6.7      |                  |                 |                   |            |             |                 | T          |
|          |                  |                 |                   |            |             |                 |            |
| 1.05     |                  |                 |                   |            |             |                 |            |
| 0.2      |                  |                 | - 1- 1            |            |             |                 |            |
|          |                  |                 | " N               | o poin     | t to        | 10 - 6          | Z          |
| 0.95     |                  |                 |                   |            |             | 1.6             |            |
| 6.75     |                  |                 |                   |            |             |                 |            |
|          |                  |                 |                   |            |             |                 |            |
| 0.55     |                  |                 |                   |            |             |                 | $\uparrow$ |
| 0.15     |                  |                 |                   |            |             |                 | -          |
|          |                  |                 | r while           | aux        | 5 0         | in ar           | 1          |
|          |                  |                 | 12                | onde       |             | 1               | 1          |
| 0.9      |                  |                 |                   |            |             |                 |            |
|          |                  |                 | " h\a             | >          | -           | h               |            |
|          |                  |                 | ^ A               | J          | hlak        | A               | 1          |
| 6.45     |                  |                 | 4.44              | even       | Judan       | i vion          | 1          |
| 0.15     |                  |                 |                   |            |             |                 |            |
| 1        | Cab              | t               | 95                |            | 1           |                 |            |
|          | Lours            | 2n              | 0.0               | ~ 00       | mu)         |                 | 1          |

NOF \_\_\_\_\_ ALS Naters - SWL (Standing Water Level Only) NLY)-1L Natural.Nutrients,TPH ACIRL ~ Field Observations Comments Hillview 6 Monthly Railwayview 6 Monthly P Lundavee 6 Monthly 6 Monthly more - freat # Stick op broken. v prom dan. 6 Monthly mire. - fromt 6 Monthly 6 Monthly 1111 WC Rd. Mine - rost outload Escot. Jane. Escot. Jane. Escot Jane Gap. Mine - rail outload Mine. - V Windmill down wadelling. some bare." "Tonsley Park -shed. Manango. - In Kemels bae. Mine. Den indra Cintra - Escot laren HS Pante Kyoona - Windwill HS Pante Talavera Wind will no fare. Sheet:

| ADDRE           | SS/OFFICE:            | 8 B A          |               | -                       | ×                     |           | v.               |                     |                       | ê.         | <b>.</b>    | ACIRL LABORAT                                              | ORY:      |                    | 5      |           |                     |
|-----------------|-----------------------|----------------|---------------|-------------------------|-----------------------|-----------|------------------|---------------------|-----------------------|------------|-------------|------------------------------------------------------------|-----------|--------------------|--------|-----------|---------------------|
| PROJE           | CT ID: WERRIS         | CREEK COAL QU  | ARTERLY GROUN | DWATERS                 | 8                     |           |                  | 2                   |                       |            |             | Bi-Monthly Ground Waters - SWL (Standing Water Level Only) |           |                    |        |           | (ALS)               |
| SAMPL           | ER NAME:              | IS HE          | illips        |                         |                       | о - э<br> |                  | 11                  |                       |            |             | Wo - 5411                                                  |           |                    |        |           | ACIRI               |
| SITE: V         | ERRIS CREEK           | MINE AND SURRO | DUNDS tion    |                         | Bore Data             |           |                  | Sampling Dat        | 0                     |            | Field Tests | Plant Charles                                              |           | Field Observations |        |           |                     |
| bles / Analytes | Sample ID / Bor<br>ID | re Date        | Time          | Standing<br>Water Level | Bore depth            | Stick up  | Purge Type       | Purge<br>Volume     | Pump Set<br>Depth     | EC - field | pH - field  | Temp - field                                               | ppearance | opo                | Colour |           | COMMENTS            |
| Reportal        |                       |                | (24hr)        | ⊡mbgl<br>⊡mbtoc<br>⊡m   | ⊡mbgl<br>⊡mbtoc<br>⊡m | m         | Pump /<br>Bailer | L                   | ⊡mbgl<br>⊡mbtoc<br>⊡m | uS/cm      | pH units    | °C                                                         |           |                    |        |           |                     |
|                 | MW8                   | HHV13          | 13:20         | 15.05                   | -                     | 0)        |                  |                     |                       |            |             |                                                            |           |                    | k      | * Race    | neath.              |
|                 | MW12                  | 24/1/13        | 13:10         | 8.61                    | <u>}.</u>             | 0.5       |                  |                     |                       | 14<br>14   |             | A. 1                                                       |           | 2                  | ×      | Haze      | -Idene              |
|                 | MW13                  | 108/1/13       | 11:50         | 4.98                    |                       | 0.4       |                  |                     |                       |            |             |                                                            |           |                    |        | Wadell    | h Well              |
| ×               | MW13B                 | 24/1/13        | 11:40         | 3.49                    | )                     | 0.3       |                  |                     |                       | *          | 1.1         | 2                                                          |           |                    |        | Taylors   | have - Hysled.      |
|                 | MW13D                 | 24/1/3         | 11:30         | 5.66                    | )                     | 0.2       |                  | 1.<br>1.            |                       |            |             | 92<br>  K                                                  |           |                    |        | Taulors   | Jane-Wird mill      |
|                 | MW15                  | 24/1/13        | 12:00         | 4.47                    | '                     | 0.5       |                  | E E                 |                       |            |             |                                                            |           |                    |        | Paynes    | lane - Windmill     |
|                 | MW16                  | 24/1/13        | 12:40         | 505                     |                       | 0.3       | 2                |                     |                       |            | ÷.          | 19 <sup>20</sup>                                           |           |                    |        | Montair   | New-Shel            |
|                 | MW17A                 | attilis        | 12:10         | 4.15                    |                       | 0.5       |                  |                     |                       |            |             | 1.<br>                                                     |           | 2                  |        | 83 Vad    | ell h               |
| ų.              | MW18A                 | 28/1/13        | 12.20         | 3.94                    |                       | -         |                  | \$                  |                       |            |             | 1 <sup>947</sup>                                           | -         |                    |        | 82 40     | dell in             |
|                 | MW19A                 | 24/13          | 13:30         | 6.07                    |                       | 0-15      | _ 100            | 4                   |                       |            |             |                                                            |           |                    |        | Liatono   | - prip.             |
| -               | MW21A                 | 24/1/13        | 11:00.        | 7.09                    |                       | 0.3       |                  | 4<br>14             |                       |            |             |                                                            |           |                    |        | Glena     | ing                 |
| 1.4             | MW22A                 | 24/1/23        | 13:00         | 5.18                    |                       | 0.55      |                  |                     |                       |            |             |                                                            |           |                    |        | 308 8     | Pannes - Hause      |
|                 | MW22B                 | 24/1/13        | 12:50         | 5.30                    |                       | 0.45      |                  |                     |                       | 6          |             | ••                                                         |           |                    |        | 308 P     | annes Impation      |
| -               | MW23A                 | 24/1/03        | 11.10         | 3.85                    |                       | 0.2       |                  |                     |                       |            |             | 2                                                          |           |                    |        | * leg E   | asy + Horse you     |
|                 | MW23B                 | 24/13          | 11:20         | 4-37                    |                       | 0.1       |                  | 1.5                 |                       | 1.<br>1.   |             |                                                            |           |                    |        | * Pear Ec | asy a Intertion     |
|                 | MW28A                 | 24/1/13        | 13:45         | 11.20                   |                       | 0.75      |                  |                     |                       |            | 14 10       | ale -                                                      | 14        |                    |        | * Woodl   | ands - Withmell     |
| PECIAI          | MW28B                 | 24/1 23        | -             |                         |                       | 0.8       |                  | - 1 - <sub>24</sub> |                       | Pun        | aer         | - bore                                                     | vo        | SWL.               |        | * Wood    | landes _ Bitts Rede |
|                 |                       |                |               |                         |                       |           |                  |                     |                       |            |             | 1.<br>1.                                                   |           |                    |        | <u> </u>  |                     |

## Appendix 7 – Surface Water Monitoring Results





**Environmental Division** 

|              | CE                              | RTIFICATE OF ANALYSIS   |                                                       |
|--------------|---------------------------------|-------------------------|-------------------------------------------------------|
| Work Order   | ES1228368                       | Page                    | : 1 of 7                                              |
| Client       |                                 | Laboratory              | : Environmental Division Sydney                       |
| Contact      | : A WRIGHT                      | Contact                 | : Client Services                                     |
| Address      | : 5-7                           | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                       |                         |                                                       |
|              | GUNNEDAH NSW 2380               |                         |                                                       |
| E-mail       | : awright@whitehavencoal.com.au | E-mail                  | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                  | Telephone               | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                  | Facsimile               | : +61-2-8784 8500                                     |
| Project      | : WERRIS CREEK SURFACE-WATER    | QC Level                | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 5136                          |                         |                                                       |
| C-O-C number | :                               | Date Samples Received   | : 30-NOV-2012                                         |
| Sampler      | : C.E                           | Issue Date              | : 06-DEC-2012                                         |
| Site         | :                               |                         |                                                       |
|              |                                 | No. of samples received | : 13                                                  |
| Quote number | :                               | No. of samples analysed | : 13                                                  |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Descriptive Results



| NATA Accredited Laboratory 825 | Signatories |
|--------------------------------|-------------|
|--------------------------------|-------------|

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories      | Position                 | Accreditation Category |  |
|------------------|--------------------------|------------------------|--|
| Ankit Joshi      | Inorganic Chemist        | Sydney Inorganics      |  |
| Ashesh Patel     | Inorganic Chemist        | Sydney Inorganics      |  |
| Hoa Nguyen       | Senior Inorganic Chemist | Sydney Inorganics      |  |
| Kim Phan         | Sample Receipt Clerk     | ACIRL Sampling         |  |
| Sarah Millington | Senior Inorganic Chemist | Sydney Inorganics      |  |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.

- AC04: Field observations supplied by ALS ACIRL.
- EK067G: LOR raised for Total P analysis on sample ID:VWD2 due to sample amtrix.
- EK071G: It has been noted that Reactive P is greater than Total P on sample ID (SD4), however this difference is within the limits of experimental variation.

# Page : 3 of 7 Work Order : ES1228368 Client : ACIRL PTY LTD Project : WERRIS CREEK SURFACE-WATER



| Sub-Matrix: WATER (Matrix: WATER) Client sample ID |                  |             | SB2             | SB6               | SB9               | SB10              | SD4               |                   |
|----------------------------------------------------|------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                    | Cli              | ient sampli | ing date / time | 29-NOV-2012 13:00 | 29-NOV-2012 12:45 | 29-NOV-2012 12:15 | 29-NOV-2012 12:00 | 29-NOV-2012 13:50 |
| Compound                                           | CAS Number       | LOR         | Unit            | ES1228368-001     | ES1228368-002     | ES1228368-003     | ES1228368-004     | ES1228368-005     |
| AC03: Field Tests                                  |                  |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated)       |                  | 1           | µS/cm           | 575               | 582               | 406               | 466               | 319               |
| рН                                                 |                  | 0.01        | pH Unit         | 9.58              | 8.15              | 8.79              | 8.75              | 8.98              |
| Temperature                                        |                  | 0.1         | °C              | 29.2              | 32.4              | 30.4              | 31.1              | 30.2              |
| EA005P: pH by PC Titrator                          |                  |             |                 |                   |                   |                   |                   |                   |
| pH Value                                           |                  | 0.01        | pH Unit         | 9.08              | 7.97              | 8.36              | 8.31              | 8.84              |
| EA010P: Conductivity by PC Titrator                |                  |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C                     |                  | 1           | µS/cm           | 589               | 617               | 418               | 486               | 328               |
| EA025: Suspended Solids                            |                  |             |                 |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                              |                  | 5           | mg/L            | 33                | 53                | 20                | 22                | 6                 |
| EK057G: Nitrite as N by Discrete Analyse           | ər               |             |                 |                   |                   |                   |                   |                   |
| Nitrite as N                                       |                  | 0.01        | mg/L            | <0.01             | 0.09              | 0.01              | 0.01              | <0.01             |
| EK058G: Nitrate as N by Discrete Analys            | er               |             |                 |                   |                   |                   |                   |                   |
| Nitrate as N                                       | 14797-55-8       | 0.01        | mg/L            | <0.01             | 1.70              | 0.08              | 0.03              | 0.01              |
| EK059G: Nitrite plus Nitrate as N (NOx)            | by Discrete Ana  | lyser       |                 |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                             |                  | 0.01        | mg/L            | <0.01             | 1.79              | 0.09              | 0.04              | 0.01              |
| EK061G: Total Kjeldahl Nitrogen By Disc            | rete Analyser    |             |                 |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                       |                  | 0.1         | mg/L            | 0.5               | 1.6               | 0.7               | 0.4               | 0.9               |
| EK062G: Total Nitrogen as N (TKN + NOx             | ) by Discrete An | alyser      |                 |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N                   |                  | 0.1         | mg/L            | 0.5               | 3.4               | 0.8               | 0.4               | 0.9               |
| EK067G: Total Phosphorus as P by Discr             | ete Analyser     |             |                 |                   |                   |                   |                   |                   |
| Total Phosphorus as P                              |                  | 0.01        | mg/L            | 0.04              | 0.07              | 0.02              | 0.02              | 0.54              |
| EK071G: Reactive Phosphorus as P by d              | iscrete analyser |             |                 |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                           |                  | 0.01        | mg/L            | <0.01             | <0.01             | <0.01             | <0.01             | 0.59              |
| EP020: Oil and Grease (O&G)                        |                  |             |                 |                   |                   |                   |                   |                   |
| Oil & Grease                                       |                  | 5           | mg/L            | <5                | <5                | <5                | <5                | <5                |

# Page : 4 of 7 Work Order : ES1228368 Client : ACIRL PTY LTD Project : WERRIS CREEK SURFACE-WATER



| Sub-Matrix: WATER (Matrix: WATER) Client sample ID |                  |            | SD5            | VWD2              | BGD               | QCU               | QCD               |                   |
|----------------------------------------------------|------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                    | Cli              | ent sampli | ng date / time | 29-NOV-2012 13:40 | 29-NOV-2012 12:30 | 29-NOV-2012 09:50 | 29-NOV-2012 10:10 | 29-NOV-2012 10:20 |
| Compound                                           | CAS Number       | LOR        | Unit           | ES1228368-006     | ES1228368-007     | ES1228368-008     | ES1228368-009     | ES1228368-010     |
| AC03: Field Tests                                  |                  |            |                |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated)       |                  | 1          | µS/cm          | 355               | 1060              | 148               | 448               | 768               |
| pH                                                 |                  | 0.01       | pH Unit        | 9.53              | 7.93              | 8.03              | 8.11              | 7.87              |
| Temperature                                        |                  | 0.1        | °C             | 33.4              | 26.0              | 28.8              | 25.3              | 24.2              |
| EA005P: pH by PC Titrator                          |                  |            |                |                   |                   |                   |                   |                   |
| pH Value                                           |                  | 0.01       | pH Unit        | 8.89              | 8.05              | 7.42              | 8.03              | 7.98              |
| EA010P: Conductivity by PC Titrator                |                  |            |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C                     |                  | 1          | µS/cm          | 362               | 1120              | 151               | 467               | 815               |
| EA025: Suspended Solids                            |                  |            |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                              |                  | 5          | mg/L           | 109               | 6                 | 77                | 18                | <5                |
| EK057G: Nitrite as N by Discrete Analys            | er               |            |                |                   |                   |                   |                   |                   |
| Nitrite as N                                       |                  | 0.01       | mg/L           | <0.01             | 0.06              | 0.05              | <0.01             | <0.01             |
| EK058G: Nitrate as N by Discrete Analys            | ser              |            |                |                   |                   |                   |                   |                   |
| Nitrate as N                                       | 14797-55-8       | 0.01       | mg/L           | <0.01             | 8.55              | 0.06              | 0.01              | <0.01             |
| EK059G: Nitrite plus Nitrate as N (NOx)            | by Discrete Ana  | yser       |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                             |                  | 0.01       | mg/L           | <0.01             | 8.61              | 0.11              | 0.01              | <0.01             |
| EK061G: Total Kjeldahl Nitrogen By Disc            | rete Analyser    |            |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                       |                  | 0.1        | mg/L           | 2.3               | 2.4               | 1.4               | 0.4               | 0.2               |
| EK062G: Total Nitrogen as N (TKN + NOx             | ) by Discrete An | alyser     |                |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N                   |                  | 0.1        | mg/L           | 2.3               | 11.0              | 1.5               | 0.4               | 0.2               |
| EK067G: Total Phosphorus as P by Discr             | rete Analyser    |            |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                              |                  | 0.01       | mg/L           | 0.18              | <0.05             | 0.87              | 0.14              | 0.21              |
| EK071G: Reactive Phosphorus as P by d              | iscrete analyser |            |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                           |                  | 0.01       | mg/L           | <0.01             | <0.01             | 0.79              | 0.05              | 0.15              |
| EP020: Oil and Grease (O&G)                        |                  |            |                |                   |                   |                   |                   |                   |
| Oil & Grease                                       |                  | 5          | mg/L           | <5                | <5                | <5                | <5                | <5                |



| Sub-Matrix: WATER (Matrix: WATER) Client sample ID |                   |             | WCD            | 200MLD-NORTH      | 200MLD-SOUTH      | <br>              |      |
|----------------------------------------------------|-------------------|-------------|----------------|-------------------|-------------------|-------------------|------|
|                                                    | Cl                | ient sampli | ng date / time | 29-NOV-2012 09:10 | 29-NOV-2012 13:15 | 29-NOV-2012 13:30 | <br> |
| Compound                                           | CAS Number        | LOR         | Unit           | ES1228368-011     | ES1228368-012     | ES1228368-013     | <br> |
| AC03: Field Tests                                  |                   |             |                |                   |                   |                   |      |
| Electrical Conductivity (Non<br>Compensated)       |                   | 1           | µS/cm          | 1170              | 1040              | 851               | <br> |
| рН                                                 |                   | 0.01        | pH Unit        | 8.43              | 8.47              | 9.12              | <br> |
| Temperature                                        |                   | 0.1         | °C             | 26.4              | 29.2              | 28.1              | <br> |
| EA005P: pH by PC Titrator                          |                   |             |                |                   |                   |                   |      |
| pH Value                                           |                   | 0.01        | pH Unit        | 8.35              | 8.24              | 8.75              | <br> |
| EA010P: Conductivity by PC Titrator                |                   |             |                |                   |                   |                   |      |
| Electrical Conductivity @ 25°C                     |                   | 1           | μS/cm          | 1260              | 1120              | 894               | <br> |
| EA025: Suspended Solids                            |                   |             |                |                   |                   |                   |      |
| Suspended Solids (SS)                              |                   | 5           | mg/L           | 36                | 218               | 17                | <br> |
| EK057G: Nitrite as N by Discrete Analys            | er                |             |                |                   |                   |                   |      |
| Nitrite as N                                       |                   | 0.01        | mg/L           | <0.01             | 0.06              | 0.04              | <br> |
| EK058G: Nitrate as N by Discrete Analys            | ser               |             |                |                   |                   |                   |      |
| Nitrate as N                                       | 14797-55-8        | 0.01        | mg/L           | <0.01             | 9.07              | 1.89              | <br> |
| EK059G: Nitrite plus Nitrate as N (NOx)            | by Discrete Ana   | lyser       |                |                   |                   |                   |      |
| Nitrite + Nitrate as N                             |                   | 0.01        | mg/L           | <0.01             | 9.13              | 1.93              | <br> |
| EK061G: Total Kjeldahl Nitrogen By Disc            | crete Analyser    |             |                |                   |                   |                   |      |
| Total Kjeldahl Nitrogen as N                       |                   | 0.1         | mg/L           | 0.3               | 1.9               | 0.8               | <br> |
| EK062G: Total Nitrogen as N (TKN + NO)             | k) by Discrete Ar | nalyser     |                |                   |                   |                   |      |
| <sup>^</sup> Total Nitrogen as N                   |                   | 0.1         | mg/L           | 0.3               | 11.0              | 2.7               | <br> |
| EK067G: Total Phosphorus as P by Disc              | rete Analyser     |             |                |                   |                   |                   |      |
| Total Phosphorus as P                              |                   | 0.01        | mg/L           | 0.24              | 0.06              | 0.08              | <br> |
| EK071G: Reactive Phosphorus as P by c              | liscrete analyser |             |                |                   |                   |                   |      |
| Reactive Phosphorus as P                           |                   | 0.01        | mg/L           | 0.23              | <0.01             | <0.01             | <br> |
| EP020: Oil and Grease (O&G)                        |                   |             |                |                   |                   |                   |      |
| Oil & Grease                                       |                   | 5           | mg/L           | <5                | <5                | <5                | <br> |



### Analytical Results

### Descriptive Results

### Sub-Matrix: WATER

| Method: Compound         | Client sample ID - Client sampling date / time | Analytical Results |
|--------------------------|------------------------------------------------|--------------------|
| AC04: Field Observations |                                                |                    |
| AC04: Appearance         | SB2 - 29-NOV-2012 13:00                        | Clear              |
| AC04: Appearance         | SB6 - 29-NOV-2012 12:45                        | Clear              |
| AC04: Appearance         | SB9 - 29-NOV-2012 12:15                        | Clear              |
| AC04: Appearance         | SB10 - 29-NOV-2012 12:00                       | Clear              |
| AC04: Appearance         | SD4 - 29-NOV-2012 13:50                        | Clear              |
| AC04: Appearance         | SD5 - 29-NOV-2012 13:40                        | Clear              |
| AC04: Appearance         | VWD2 - 29-NOV-2012 12:30                       | Clear              |
| AC04: Appearance         | BGD - 29-NOV-2012 09:50                        | Turbid             |
| AC04: Appearance         | QCU - 29-NOV-2012 10:10                        | Clear              |
| AC04: Appearance         | QCD - 29-NOV-2012 10:20                        | Clear              |
| AC04: Appearance         | WCD - 29-NOV-2012 09:10                        | Clear              |
| AC04: Appearance         | 200MLD-NORTH - 29-NOV-2012 13:15               | Clear              |
| AC04: Appearance         | 200MLD-SOUTH - 29-NOV-2012 13:30               | Clear              |
| AC04: Odour              | SB2 - 29-NOV-2012 13:00                        | Nil                |
| AC04: Odour              | SB6 - 29-NOV-2012 12:45                        | Nil                |
| AC04: Odour              | SB9 - 29-NOV-2012 12:15                        | Nil                |
| AC04: Odour              | SB10 - 29-NOV-2012 12:00                       | Nil                |
| AC04: Odour              | SD4 - 29-NOV-2012 13:50                        | Nil                |
| AC04: Odour              | SD5 - 29-NOV-2012 13:40                        | Nil                |
| AC04: Odour              | VWD2 - 29-NOV-2012 12:30                       | Nil                |
| AC04: Odour              | BGD - 29-NOV-2012 09:50                        | Nil                |
| AC04: Odour              | QCU - 29-NOV-2012 10:10                        | Nil                |
| AC04: Odour              | QCD - 29-NOV-2012 10:20                        | Nil                |
| AC04: Odour              | WCD - 29-NOV-2012 09:10                        | Nil                |
| AC04: Odour              | 200MLD-NORTH - 29-NOV-2012 13:15               | Nil                |
| AC04: Odour              | 200MLD-SOUTH - 29-NOV-2012 13:30               | Nil                |
| AC04: Colour             | SB2 - 29-NOV-2012 13:00                        | Clear              |
| AC04: Colour             | SB6 - 29-NOV-2012 12:45                        | Grey               |
| AC04: Colour             | SB9 - 29-NOV-2012 12:15                        | Clear              |
| AC04: Colour             | SB10 - 29-NOV-2012 12:00                       | Grey               |
| AC04: Colour             | SD4 - 29-NOV-2012 13:50                        | Clear              |
| AC04: Colour             | SD5 - 29-NOV-2012 13:40                        | Slight Brown       |
| AC04: Colour             | VWD2 - 29-NOV-2012 12:30                       | Clear              |
| AC04: Colour             | BGD - 29-NOV-2012 09:50                        | Brown              |
| AC04: Colour             | QCU - 29-NOV-2012 10:10                        | Clear              |
| AC04: Colour             | QCD - 29-NOV-2012 10:20                        | Clear              |
| AC04: Colour             | WCD - 29-NOV-2012 09:10                        | Clear              |
| AC04: Colour             | 200MLD-NORTH - 29-NOV-2012 13:15               | Slightly Brown     |
| AC04: Colour             | 200MLD-SOUTH - 29-NOV-2012 13:30               | Clear              |

| Sub-Matrix: WATER | · WERKIS CREEK SURFACE-WATER |     |
|-------------------|------------------------------|-----|
| Client            |                              | ALS |
| Work Order        | : ES1228368                  |     |
| Page              | : 7 of 7                     |     |

Method: Compound

Client sample ID - Client sampling date / time

Analytical Results

## Appendix 8 – Discharge Monitoring Results





**Environmental Division** 

|              | CEF                              | RTIFICATE OF ANALYSIS   |                                                       |
|--------------|----------------------------------|-------------------------|-------------------------------------------------------|
| Work Order   | ES1230428                        | Page                    | : 1 of 3                                              |
| Client       |                                  | Laboratory              | : Environmental Division Sydney                       |
| Contact      | : A WRIGHT                       | Contact                 | : Client Services                                     |
| Address      | : 5-7                            | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                        |                         |                                                       |
|              | GUNNEDAH NSW 2380                |                         |                                                       |
| E-mail       | : awright@whitehavencoal.com.au  | E-mail                  | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                   | Telephone               | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                   | Facsimile               | : +61-2-8784 8500                                     |
| Project      | : WERRIS CREEK DISCHARGE SAMPLES | QC Level                | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 5258                           |                         |                                                       |
| C-O-C number | :                                | Date Samples Received   | : 28-DEC-2012                                         |
| Sampler      | : BP                             | Issue Date              | : 07-JAN-2013                                         |
| Site         | :                                |                         |                                                       |
|              |                                  | No. of samples received | : 4                                                   |
| Quote number | : SY/417/12                      | No. of samples analysed | : 4                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

|                  | NATA Accredited Laboratory 825<br>Accredited for compliance with | Signatories<br>This document has been electronically<br>carried out in compliance with procedures sp | signed by the authorized signatories ecified in 21 CFR Part 11. | indicated below. Electronic signing has been |
|------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
| NAIA             | ISO/IEC 17025.                                                   | Signatories                                                                                          | Position                                                        | Accreditation Category                       |
|                  |                                                                  | Ankit Joshi                                                                                          | Inorganic Chemist                                               | Sydney Inorganics                            |
|                  |                                                                  | Kim Phan                                                                                             | Sample Receipt Clerk                                            | ACIRL Sampling                               |
| WORLD RECOGNISED |                                                                  | Sarah Millington                                                                                     | Senior Inorganic Chemist                                        | Sydney Inorganics                            |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- EK059G: Spike failed for NOx due to matrix interferences (confirmed by re-analysis).

# Page : 3 of 3 Work Order : ES1230428 Client : ACIRL PTY LTD Project : WERRIS CREEK DISCHARGE SAMPLES



| Sub-Matrix: WATER (Matrix: WATER)            |                                                    | Cli         | ent sample ID  | SB2               | SB9               | QCD               | QCU               |  |  |
|----------------------------------------------|----------------------------------------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                              | Cl                                                 | ient sampli | ng date / time | 24-DEC-2012 09:50 | 24-DEC-2012 09:50 | 24-DEC-2012 09:50 | 24-DEC-2012 10:10 |  |  |
| Compound                                     | CAS Number                                         | LOR         | Unit           | ES1230428-001     | ES1230428-002     | ES1230428-003     | ES1230428-004     |  |  |
| AC03: Field Tests                            |                                                    |             |                |                   |                   |                   |                   |  |  |
| Electrical Conductivity (Non<br>Compensated) |                                                    | 1           | µS/cm          | 332               | 154               | 820               | 457               |  |  |
| рН                                           |                                                    | 0.01        | pH Unit        | 7.62              | 7.95              | 7.64              | 7.69              |  |  |
| Temperature                                  |                                                    | 0.1         | °C             |                   |                   | 24.9              | 24.5              |  |  |
| EA005P: pH by PC Titrator                    |                                                    |             |                |                   |                   |                   |                   |  |  |
| pH Value                                     |                                                    | 0.01        | pH Unit        | 7.99              | 7.20              | 8.55              | 8.36              |  |  |
| EA010P: Conductivity by PC Titrator          |                                                    |             |                |                   |                   |                   |                   |  |  |
| Electrical Conductivity @ 25°C               |                                                    | 1           | µS/cm          | 368               | 166               | 926               | 507               |  |  |
| EA025: Suspended Solids                      |                                                    |             |                |                   |                   |                   |                   |  |  |
| Suspended Solids (SS)                        |                                                    | 5           | mg/L           | 110               | 1530              | 6                 | 102               |  |  |
| EK057G: Nitrite as N by Discrete Analys      | er                                                 |             |                |                   |                   |                   |                   |  |  |
| Nitrite as N                                 |                                                    | 0.01        | mg/L           | 0.29              | 0.03              | <0.01             | <0.01             |  |  |
| EK058G: Nitrate as N by Discrete Analys      | ser                                                |             |                |                   |                   |                   |                   |  |  |
| Nitrate as N                                 | 14797-55-8                                         | 0.01        | mg/L           | 5.03              | 0.61              | 0.02              | <0.01             |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx)      | by Discrete Ana                                    | lyser       |                |                   |                   |                   |                   |  |  |
| Nitrite + Nitrate as N                       |                                                    | 0.01        | mg/L           | 5.32              | 0.64              | 0.02              | <0.01             |  |  |
| EK061G: Total Kjeldahl Nitrogen By Disc      | crete Analyser                                     |             |                |                   |                   |                   |                   |  |  |
| Total Kjeldahl Nitrogen as N                 |                                                    | 0.1         | mg/L           | 5.1               | 1.5               | 0.5               | 2.2               |  |  |
| EK062G: Total Nitrogen as N (TKN + NO        | x) by Discrete Ar                                  | nalyser     |                |                   |                   |                   |                   |  |  |
| <sup>^</sup> Total Nitrogen as N             |                                                    | 0.1         | mg/L           | 10.4              | 2.1               | 0.5               | 2.2               |  |  |
| EK067G: Total Phosphorus as P by Disc        | EK067G: Total Phosphorus as P by Discrete Analyser |             |                |                   |                   |                   |                   |  |  |
| Total Phosphorus as P                        |                                                    | 0.01        | mg/L           | 0.35              | 0.30              | 0.14              | 0.34              |  |  |
| EK071G: Reactive Phosphorus as P by c        | liscrete analyser                                  |             |                |                   |                   |                   |                   |  |  |
| Reactive Phosphorus as P                     |                                                    | 0.01        | mg/L           | 0.21              | 0.01              | 0.14              | <0.01             |  |  |
| EP020: Oil and Grease (O&G)                  |                                                    |             |                |                   |                   |                   |                   |  |  |
| Oil & Grease                                 |                                                    | 5           | mg/L           | <5                | <5                | <5                | <5                |  |  |





**Environmental Division** 

|              | CE                               | <b>RTIFICATE OF ANALYSIS</b> |                                                       |
|--------------|----------------------------------|------------------------------|-------------------------------------------------------|
| Work Order   | ES1302025                        | Page                         | : 1 of 4                                              |
| Client       |                                  | Laboratory                   | : Environmental Division Sydney                       |
| Contact      | : A WRIGHT                       | Contact                      | : Client Services                                     |
| Address      | : 5-7                            | Address                      | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                        |                              |                                                       |
|              | GUNNEDAH NSW 2380                |                              |                                                       |
| E-mail       | : awright@whitehavencoal.com.au  | E-mail                       | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                   | Telephone                    | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                   | Facsimile                    | : +61-2-8784 8500                                     |
| Project      | : WERRIS CREEK DISCHARGE SAMPLES | QC Level                     | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 5424                           |                              |                                                       |
| C-O-C number | :                                | Date Samples Received        | : 30-JAN-2013                                         |
| Sampler      | : BP+AW                          | Issue Date                   | : 05-FEB-2013                                         |
| Site         | :                                |                              |                                                       |
|              |                                  | No. of samples received      | : 7                                                   |
| Quote number | : SY/417/12                      | No. of samples analysed      | : 7                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

|                  | NATA Accredited Laboratory 825<br>Accredited for compliance with | Signatories<br>This document has been electronically<br>carried out in compliance with procedures s | / signed by the authorized signatories<br>pecified in 21 CFR Part 11. | indicated below. Electronic signing has been |
|------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|
| NAIA             | ISO/IEC 17025.                                                   | Signatories                                                                                         | Position                                                              | Accreditation Category                       |
|                  |                                                                  | Ankit Joshi<br>Asbosh Patel                                                                         | Inorganic Chemist                                                     | Sydney Inorganics                            |
| WORLD RECOGNISED |                                                                  | Kim Phan                                                                                            | Sample Receipt Clerk                                                  | ACIRL Sampling                               |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.

# Page : 3 of 4 Work Order : ES1302025 Client : ACIRL PTY LTD Project : WERRIS CREEK DISCHARGE SAMPLES



| Sub-Matrix: WATER (Matrix: WATER)            |                    | Cli         | ent sample ID   | SB2               | SB9               | SB10              | QCU               | QCD               |
|----------------------------------------------|--------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl                 | lient sampl | ing date / time | 29-JAN-2013 09:15 | 29-JAN-2013 09:30 | 29-JAN-2013 09:45 | 29-JAN-2013 12:20 | 29-JAN-2013 12:30 |
| Compound                                     | CAS Number         | LOR         | Unit            | ES1302025-001     | ES1302025-002     | ES1302025-003     | ES1302025-004     | ES1302025-005     |
| AC03: Field Tests                            |                    |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated) |                    | 1           | µS/cm           |                   |                   |                   | 103               | 118               |
| pH                                           |                    | 0.01        | pH Unit         |                   |                   |                   | 7.47              | 7.68              |
| Temperature                                  |                    | 0.1         | °C              |                   |                   |                   | 25.4              | 24.0              |
| EA005P: pH by PC Titrator                    |                    |             |                 |                   |                   |                   |                   |                   |
| pH Value                                     |                    | 0.01        | pH Unit         | 7.40              | 6.88              | 7.32              | 6.94              | 7.02              |
| EA010P: Conductivity by PC Titrator          |                    |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C               |                    | 1           | µS/cm           | 199               | 169               | 202               | 97                | 112               |
| EA025: Suspended Solids                      |                    |             |                 |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                        |                    | 5           | mg/L            | 298               | 198               | 508               | 64                | 182               |
| EK057G: Nitrite as N by Discrete Analy       | ser                |             |                 |                   |                   |                   |                   |                   |
| Nitrite as N                                 |                    | 0.01        | mg/L            | 0.02              | 0.09              | 0.02              | 0.02              | 0.02              |
| EK058G: Nitrate as N by Discrete Analy       | /ser               |             |                 |                   |                   |                   |                   |                   |
| Nitrate as N                                 | 14797-55-8         | 0.01        | mg/L            | 1.17              | 0.86              | 0.64              | 0.50              | 0.42              |
| EK059G: Nitrite plus Nitrate as N (NOx)      | by Discrete Ana    | lyser       |                 |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                       |                    | 0.01        | mg/L            | 1.19              | 0.95              | 0.66              | 0.52              | 0.44              |
| EK061G: Total Kjeldahl Nitrogen By Dis       | crete Analyser     |             |                 |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                 |                    | 0.1         | mg/L            | 1.2               | 1.0               | 2.0               | 1.5               | 1.4               |
| EK062G: Total Nitrogen as N (TKN + NC        | 0x) by Discrete Ar | nalyser     |                 |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N             |                    | 0.1         | mg/L            | 2.4               | 2.0               | 2.7               | 2.0               | 1.8               |
| EK067G: Total Phosphorus as P by Dis         | crete Analyser     |             |                 |                   |                   |                   |                   |                   |
| Total Phosphorus as P                        |                    | 0.01        | mg/L            | 0.53              | 0.30              | 0.46              | 0.64              | 0.60              |
| EK071G: Reactive Phosphorus as P by          | discrete analyser  | •           |                 |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                     |                    | 0.01        | mg/L            | 0.50              | 0.01              | 0.07              | 0.51              | 0.44              |
| EP020: Oil and Grease (O&G)                  |                    |             |                 |                   |                   |                   |                   |                   |
| Oil & Grease                                 |                    | 5           | mg/L            | <5                | <5                | <5                | <5                | <5                |



| Sub-Matrix: WATER (Matrix: WATER)            |                   | Cli          | ent sample ID  | WCU               | WCD               | <br> |  |
|----------------------------------------------|-------------------|--------------|----------------|-------------------|-------------------|------|--|
|                                              | Cl                | lient sampli | ng date / time | 29-JAN-2013 09:50 | 29-JAN-2013 10:10 | <br> |  |
| Compound                                     | CAS Number        | LOR          | Unit           | ES1302025-006     | ES1302025-007     | <br> |  |
| AC03: Field Tests                            |                   |              |                |                   |                   |      |  |
| Electrical Conductivity (Non<br>Compensated) |                   | 1            | µS/cm          | 436               | 215               | <br> |  |
| рН                                           |                   | 0.01         | pH Unit        | 8.11              | 8.19              | <br> |  |
| Temperature                                  |                   | 0.1          | °C             | 22.9              | 22.7              | <br> |  |
| EA005P: pH by PC Titrator                    |                   |              |                |                   |                   |      |  |
| pH Value                                     |                   | 0.01         | pH Unit        | 7.78              | 7.34              | <br> |  |
| EA010P: Conductivity by PC Titrator          |                   |              |                |                   |                   |      |  |
| Electrical Conductivity @ 25°C               |                   | 1            | μS/cm          | 452               | 210               | <br> |  |
| EA025: Suspended Solids                      |                   |              |                |                   |                   |      |  |
| Suspended Solids (SS)                        |                   | 5            | mg/L           | <5                | 202               | <br> |  |
| EK057G: Nitrite as N by Discrete Analys      | ser               |              |                |                   |                   |      |  |
| Nitrite as N                                 |                   | 0.01         | mg/L           | 0.04              | 0.09              | <br> |  |
| EK058G: Nitrate as N by Discrete Analy       | ser               |              |                |                   |                   |      |  |
| Nitrate as N                                 | 14797-55-8        | 0.01         | mg/L           | 2.37              | 2.64              | <br> |  |
| EK059G: Nitrite plus Nitrate as N (NOx)      | by Discrete Ana   | alyser       |                |                   |                   |      |  |
| Nitrite + Nitrate as N                       |                   | 0.01         | mg/L           | 2.41              | 2.73              | <br> |  |
| EK061G: Total Kjeldahl Nitrogen By Disc      | crete Analyser    |              |                |                   |                   |      |  |
| Total Kjeldahl Nitrogen as N                 |                   | 0.1          | mg/L           | 0.9               | 1.9               | <br> |  |
| EK062G: Total Nitrogen as N (TKN + NO        | x) by Discrete Ar | nalyser      |                |                   |                   |      |  |
| <sup>^</sup> Total Nitrogen as N             |                   | 0.1          | mg/L           | 3.3               | 4.6               | <br> |  |
| EK067G: Total Phosphorus as P by Disc        | rete Analyser     |              |                |                   |                   |      |  |
| Total Phosphorus as P                        |                   | 0.01         | mg/L           | 0.21              | 0.74              | <br> |  |
| EK071G: Reactive Phosphorus as P by c        | discrete analyse  | r            |                |                   |                   |      |  |
| Reactive Phosphorus as P                     |                   | 0.01         | mg/L           | 0.19              | 0.62              | <br> |  |
| EP020: Oil and Grease (O&G)                  |                   |              |                |                   |                   |      |  |
| Oil & Grease                                 |                   | 5            | mg/L           | <5                | <5                | <br> |  |
# Werris Creek Coal Community Consultative Committee

# Twenty Seventh Meeting of the Committee <u>Training Room, Werris Creek Coal</u> <u>9:30am Thursday 30<sup>th</sup> June 2013</u> <u>MINUTES</u>

Werris Creek Coal (WCC) Community Consultative Committee (CCC) met at 9:30am and had a pit tour of the mine site prior to the meeting. The feedback from the site tour was positive with the CCC inspecting the rehabilitation, overburden emplacement, eastern lookout in pit, new mine infrastructure area and train load out facility.

#### 1. Record of Attendance:

Present: Gae Swain (Independent Chairperson); Noel Taylor (Community Representative); Lindsay Bridge (Community Representative); Col Stewart (Liverpool Plains Shire Council - Councilor); Ron Van Katwyk (Liverpool Plains Shire Council – Director Environmental Services); Peter Easey (WCC Operations Manager) and Andrew Wright (WCC Environmental Officer and Minute Taker).

Apologies: Geoff Dunn (Community Representative); Jill Coleman (Community Representative) and Roslyn Marr (Community Representative).

#### 2. Declaration of Pecuniary or Other Interests

Noel Taylor declared that his son works for Werris Creek Coal.

#### 3. New Matters for Discussion under General Business

Community Enhancement Fund update and request from Liverpool Plains Shire Council that funds are directed to a fire early warning system at the Werris Creek Railway Museum. Lindsay Bridge wanted to discuss dust issues.

#### 4. Matters Arising

#### a) Actions from Previous Meeting

None.

b) Other Matters Arising

None.

#### 5. Minutes of Previous Meeting

Minutes of the previous meeting on the 28<sup>th</sup> February 2013 were accepted as true and accurate representation of business conducted on that day.

Moved: Noel Taylor. Seconded: Col Stewart. Motion carried.

#### 6. Environmental Monitoring Report: February, March and April 2013

**Meteorology** – February and March were wet months while April was very dry with moderate southerly winds across the three months.

Air Quality – All PM10 and PM2.5 dust results were below or consistent with the annual average for each site and well below the annual average and daily maximum criteria indicating good air quality. Dust gauges at 8 Kurrara St and "Cintra" were the only locations to record a monthly result above 4.0g/m<sup>2</sup>/month. The elevated February and April results for 8 Kurrara St were likely to have been contaminated with dust from another source other than mining as the two other Werris Creek dust gauges both recorded results less than 1g/m<sup>2</sup>/month for the same period. The elevated April result for "Cintra" is likely to be due to mining operations as the MIA (Mine Infrastructure Area) Dam construction site was less than 1km from the "Cintra" dust gauge assisted by the southerly winds. The Quirindi rail line dust deposition levels are low (well below the impact assessment criteria nominated by the EPA of 4.0  $q/m^2/month$ ). There were two dust complaints received during this period from Werris Creek residents on the 3rd and 28th April 2013 related to seeing dust clouds in the mornings over the top of the WCC mine site. A review of weather conditions identified that temperature inversions and low wind speeds were present on both mornings that resulted in dust emissions being trapped underneath the inversion layer. The inversion does not allow the dust to disperse but concentrates the dust and combined with the low light conditions, makes the dust cloud visible when under normal weather conditions it would not be present. The real time PM10 dust levels in Werris Creek were less than 30µg/m<sup>3</sup> good air quality threshold; demonstrating that this is a localized event not impacting on Werris Creek township.

**Noise** – There were no noise exceedances during February, March and April 2013. The last recorded noise exceedance was over two years ago in October 2010. There were three noise complaints during the period; two related to open cut operations and one related to train noise. The noise complaints related to open cut mining operations were actively monitored in real time by the Noise Control Operator managing noise levels and suspending activities as required. Investigation into the complaints found that on each occasion the mine was in compliance. The train noise complaint was about activities in the Werris Creek rail yard and is unrelated to WCC operations.

**Blasting** – During the period a total of 22 blasts were fired. All blasts over the period complied with maximum license limits (120d(B)L and 10mm/s) with no blast overpressure levels above 115dB(L) or vibration levels over 5mm/s for the three month period. There were eleven blast complaints during the period from three separate blast events. The blast on 8<sup>th</sup> April 2013 resulted in two complaints and the blast on 11<sup>th</sup> April 2013 resulted in three complaints, all from Werris Creek residents due to shots being fired in the G Coal Interburden. While the blast results were in compliance, the G Coal Interburden blast was fired in one shot the full 45m thickness. The blasting contractor could not identify what had caused the complaints so Whitehaven Coal engaged an independent blasting expert to review G Coal Interburden blast designs and identify the cause of complaints. The blast on 8<sup>th</sup> February 2013 resulted in six complaints from Werris Creek residents. While the blast results were in compliance, an investigation identified improvements to be made to the blast process.

**Groundwater** – The groundwater quality indicates a freshening of aquifers due to heavy rain events from Christmas to the end of February 2013. The majority of groundwater bore water levels increased also as a result of the heavy rain events.

**Surface Water** – All onsite and offsite water quality is consistent with longer term averages and within the site water management plan trigger values.

**Surface Water Discharges** – There were five wet weather dirty water discharges during the period. Although the Total Suspended Solids (sediment) levels were greater than 50mg/L; all dirty water discharge results were in compliance with WCC's Environmental Protection Licence 12290 because the 5 day rainfall total exceeded 39.2mm and there were no impacts on water quality monitored in Quipolly and Werris Creeks' catchments as a result of the dirty water discharge events.

**Complaints** – There were sixteen complaints received during the period. There were eleven complaints related to blasting; three complaints relating to noise and two complaints related to dust. There were thirteen different complainants during the period with fourteen complaints from Werris Creek residents and two complaints from Quipolly residents.

Motion moved to accept the Environmental Monitoring Report for February, March and April 2013.

Moved: Col Stewart. Seconded: Lindsay Bridge. Motion Carried.

#### 7. General Business

#### a. Community Enhancement Fund (CEF) Update

Werris Creek Skate Park has been constructed and the official opening was on 6<sup>th</sup> June 2013. The installation of new lift at Werris Creek Rail Museum is planned for the coming months.

A letter from Liverpool Plains Shire Council dated 28th May 2013 requested Whitehaven Coal and the WCC CCC to approve the \$30,000 of unallocated funds for a fire early warning system at the Werris Creek Railway Museum in 2013. The fire early warning system is required to allow the public access to the second storey of the museum when the lift is operational. Whitehaven Coal management has agreed to the request pending the WCC CCC approval.

Motion moved to approve funding from the CEF for a fire early warning system \$30,000 in 2013.

Moved: Lindsay Bridge. Seconded: Noel Taylor. Motion Carried.

#### b. Perceived Increase in Dust Emissions

Lindsay Bridge raised concerns from various community members regarding the increase in dust in the area generally believed to be as a result of WCC. Lindsay Bridge was going to see if a meeting between a concerned resident (Glenn Wilson) and WCC could be arranged.

#### Meeting Closed 12:00pm.

#### Next Meeting scheduled for Thursday 29<sup>th</sup> August 2013.

#### Copy to:

| Gae Swain      | Independent Chairperson  |
|----------------|--------------------------|
| Jill Coleman   | Community Representative |
| Noel Taylor    | Community Representative |
| Lindsay Bridge | Community Representative |
| Roslyn Marr    | Community Representative |
| Geoff Dunn     | Community Representative |
|                | 2                        |

Ron Van Katwyk Cr Col Stewart Stephen O'Donoghue Simon Lund Lindsay Fulloon

I PSC LPSC DoPI DRE EPA

Peter Easey Danny Young Andrew Wright Werris Creek Coal Whitehaven Coal Werris Creek Coal



# WERRIS CREEK COAL PTY LTD

# **QUARTERLY ENVIRONMENTAL MONITORING**

# REPORT

# February, March and April 2013

This Environmental Monitoring Report covers the period 1<sup>st</sup> February 2013 to 30<sup>th</sup> April 2013 for the Werris Creek No.2 Coal Mine Community Consultative Committee.

The report includes environmental monitoring results from the on-site Weather Station, Air Quality, Noise, Blasting, Surface Water, Groundwater and Discharge Water Quality together with any community complaints received and general details on site environmental matters.

**Note:** Monitoring results with any non compliance of monitoring criteria are highlighted in yellow.

# CONTENTS

| 1.1       WEATHER STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0   | METEOROLOGY                                | .3 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------|----|
| 2.0       AIR QUALITY       3         2.1       HVAS (PM10) and TEOM (PM10).       3         2.1.1       Monitoring Data Results.       3         2.1.2       Discussion - Compliance / Non Compliance       4         2.2       WERRIS CREEK MINE DEPOSITED DUST.       4         2.2       WERRIS CREEK MINE DEPOSITED DUST.       4         2.2       WERRIS CREEK MINE DEPOSITION DUST.       4         2.2       Discussion - Compliance / Non Compliance       4         2.2       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5       5         3.1       OPERATIONAL NOISE       5       5         3.1.1       Monitoring Data Results       6       6         3.1.2       Discussion - Compliance / Non Compliance       7       7         4.0       BLAST       7       7         4.1       BLAST MONITORING       7       7         4.1       BLAST COMPLAINTS       8       8         5.0       WATER       8 <t< th=""><th>1.1</th><th>WEATHER STATION</th><th> 3</th></t<>                                               | 1.1   | WEATHER STATION                            | 3  |
| 2.1       HVAS (PM10) and TEOM (PM10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0   | AIR QUALITY                                | .3 |
| 2.1.1       Monitoring Data Results       3         2.1.2       Discussion - Compliance / Non Compliance       4         2.2       WERRIS CREEK MINE DEPOSITED DUST.       4         2.2.1       Monitoring Data Results       4         2.2.2       Discussion - Compliance / Non Compliance       4         2.3.1       Monitoring Data Results       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         4.1       BLAST       7         4.1       BLAST       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance <td>2.1</td> <td>HVAS (PM10) and TEOM (PM10)</td> <td> 3</td>         | 2.1   | HVAS (PM10) and TEOM (PM10)                | 3  |
| 2.1.2       Discussion - Compliance / Non Compliance       4         2.2       WERRIS CREEK MINE DEPOSITED DUST       4         2.2.1       Monitoring Data Results       4         2.2.2       Discussion - Compliance / Non Compliance       4         2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       7         3.1       DEVENTION       7         4.1       BLAST       7         4.1       BLAST       7         4.1       BLAST       7         4.1       BLAST COMPLAINTS       8         5.1       GROUND WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2                                                                                                                                                            | 2.1.1 | Monitoring Data Results                    | 3  |
| 2.2       WERRIS CREEK MINE DEPOSITED DUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1.2 | 2 Discussion - Compliance / Non Compliance | 4  |
| 2.2.1       Monitoring Data Results       4         2.2.2       Discussion - Compliance / Non Compliance       4         2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.1.2       Discussion - Compl                                                                                                                | 2.2   | WERRIS CREEK MINE DEPOSITED DUST           | 4  |
| 2.2.2       Discussion - Compliance / Non Compliance       4         2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.3       SURFACE WATER       9         5.2.4       Monitoring Data Results       9         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1                                                                                                               | 2.2.1 | Monitoring Data Results                    | 4  |
| 2.3       QUIRINDI TRAIN DUST DEPOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2.2 | 2 Discussion - Compliance / Non Compliance | 4  |
| 2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       10 <t< th=""><td>2.3</td><td>QUIRINDI TRAIN DUST DEPOSITION</td><td> 5</td></t<>                                | 2.3   | QUIRINDI TRAIN DUST DEPOSITION             | 5  |
| 2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.1       Monitoring Data Results       9         5.3.1       Monitoring Data Results       10         <                                                                                                   | 2.3.1 | Monitoring Data Results                    | 5  |
| 2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER.       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       10         5.3.1       Monitoring Data Results       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance / Non Compliance       10         5.3.3       <                                                                                                            | 2.3.2 | 2 Discussion - Compliance / Non Compliance | 5  |
| 3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST       7         4.1       Monitoring Data Results       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       10         5.3       SURFACE WATER       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance                                                                                                                | 2.4   | AIR QUALITY COMPLAINTS                     | 5  |
| 3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.3       SURFACE WATER       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       10         5.3       SURFACE WATER DISCHARGES       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance / Non Compliance       10         5.3.1       Monitoring Data Results       10         5.3.2                                                                                                                       | 3.0   | NOISE                                      | .5 |
| 3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       10         5.3       SURFACE WATER       9         5.2.2       Discussion - Compliance / Non Compliance       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance / Non Compliance       10 <td>3.1</td> <td>OPERATIONAL NOISE</td> <td> 5</td>                            | 3.1   | OPERATIONAL NOISE                          | 5  |
| 3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       10         5.3       SURFACE WATER DISCHARGES       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance / Non Compliance       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance / Non Compliance       10         5.3.1       Monitoring Data Results                                                                           | 3.1.1 | Monitoring Data Results                    | 6  |
| 3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       10         5.3       SURFACE WATER DISCHARGES       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance / Non Compliance       10         5.3.1       Monitoring Data Results       10         5.3.2       Discussion - Compliance / Non Compliance       10         5.3       Discussion - Compliance / Non Compliance       10 <td>3.1.2</td> <td>2 Discussion - Compliance / Non Compliance</td> <td> 7</td> | 3.1.2 | 2 Discussion - Compliance / Non Compliance | 7  |
| 4.0BLAST74.1BLAST MONITORING74.1.1Monitoring Data Results74.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.4Monitoring Data Results105.3.5Discussion - Compliance / Non Compliance105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2   | NOISE COMPLAINTS                           | 7  |
| 4.1BLAST MONITORING74.1.1Monitoring Data Results74.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0   | BLAST                                      | .7 |
| 4.1.1Monitoring Data Results74.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1   | BLAST MONITORING                           | 7  |
| 4.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1.1 | Monitoring Data Results                    | 7  |
| 4.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1.2 | 2 Discussion - Compliance / Non Compliance | 8  |
| 5.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.3WATER DISCHARGES105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.2   | BLAST COMPLAINTS                           | 8  |
| 5.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0   | WATER                                      | .8 |
| 5.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.1   | GROUND WATER                               | 8  |
| 5.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1.1 | Monitoring Data Results                    | 8  |
| 5.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.1.2 | 2 Discussion - Compliance / Non Compliance | 9  |
| 5.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.2   | SURFACE WATER                              | 9  |
| 5.2.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.2.1 | Monitoring Data Results                    | 9  |
| 5.3SURFACE WATER DISCHARGES105.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.2.2 | 2 Discussion - Compliance / Non Compliance | 10 |
| 5.3.1Monitoring Data Results105.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.3   | SURFACE WATER DISCHARGES                   | 10 |
| 5.3.2 Discussion - Compliance / Non Compliance105.3 WATER COMPLAINTS106.0 COMPLAINTS SUMMARY107.0 GENERAL11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3.1 | Monitoring Data Results                    | 10 |
| 5.3       WATER COMPLAINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.3.2 | 2 Discussion - Compliance / Non Compliance | 10 |
| 6.0 COMPLAINTS SUMMARY10<br>7.0 GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3   | WATER COMPLAINTS                           | 10 |
| 7.0 GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.0   | COMPLAIN IS SUMMARY                        | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.0   | GENERAL                                    | 11 |

### **APPENDICES**

| Appendix 1 | .Dust Monitoring Results - PM10 and PM2.5 |
|------------|-------------------------------------------|
| Appendix 2 | .Dust Monitoring Results – Deposited Dust |
| Appendix 3 | .Train Dust Deposition Monitoring         |
| Appendix 4 | Noise Monitoring Results                  |
| Appendix 5 | Blasting Monitoring Results               |
| Appendix 6 | .Groundwater Monitoring Results           |
| Appendix 7 | Surface Water Monitoring Results          |
| Appendix 8 | Discharge Monitoring Results              |

# 1.0 METEOROLOGY

### 1.1 WEATHER STATION

Werris Creek Coal (WCC) collects meteorological data from the onsite weather station located on the top level of the overburden emplacement and from the continuous noise monitoring units located at Quipolly and Werris Creek. The following table summarises temperature, inversion and rainfall data for the last three months and wind data is presented below in windroses. February and March were wet months while April was very dry with moderate southerly winds across the three months.

| Month         | Q<br>Te | uipol<br>mp (' | ly<br>PC) | Wei<br>Te | rris (<br>mp ( | Creek<br>(°C) | W(<br>(° | CC T<br>C) 1( | C Temp Lapse Ra<br>C) 10m (°C/100r |      | e Rate<br>00m) |        | Rainfa | all (m | m)      |
|---------------|---------|----------------|-----------|-----------|----------------|---------------|----------|---------------|------------------------------------|------|----------------|--------|--------|--------|---------|
|               | Min     | Avg            | Max       | Min       | Avg            | Max           | Min      | Avg           | Max                                | Avg  | 90%            | Onsite | Quip   | WC     | Annual* |
| February 2013 | 10.0    | 21.4           | 31.9      | 12.1      | 22.1           | 31.7          | 12.4     | 21.8          | 31.9                               | -0.3 | +5.4           | 148.2  | 99.0   | 83.0   | 722.0   |
| March 2013    | 6.3     | 20.2           | 30.6      | 10.7      | 21.2           | 30.7          | 12.0     | 21.3          | 30.3                               | +0.8 | +6.4           | 63.8   | 89.6   | 45.4   | 785.8   |
| April 2013    | 0.7     | 15.0           | 27.6      | 5.1       | 17.5           | 27.3          | 8.1      | 17.9          | 26.5                               | +2.5 | +9.4           | 0.8    | 0.4    | 1.8    | 0.8     |

\* Annual cumulative total since April 2012 to March 2013 from a composite data set based on the onsite Weather Station at WCC.



# 2.0 AIR QUALITY

### 2.1 HVAS (PM10) and TEOM (PM10)

WCC operates five High Volume Air Sampler (HVAS) monitors to measure particulate matter less than 10 micron (PM10) and total suspended particulate (TSP) matter at the four sites. HVAS sampling is scheduled for 24 hours every 6 days in accordance with Environment Protection Authority (EPA) guidelines and results are reported as micro grams per cubic metre ( $\mu$ g/m<sup>3</sup>) of air sampled. In addition, WCC operates a Tapered Element Oscillating Microbalance (TEOM) monitor in Werris Creek measuring real time PM10 and PM2.5 (particulate matter less than 2.5 micron) dust levels.

PM2.5 – TEOM92 "Werris Creek" PM10 – TEOM92 "Werris Creek" PM10 – HVP20 "Tonsley Park" PM10 – HVP1 "Escott" PM10 – HVP20 "Glenara" PM10 – HVP98 "Kyooma" TSP – HVT98 "Kyooma"

#### 2.1.1 Monitoring Data Results

The average results for the last three months are provided in the table below; however see HVAS/TEOM monitoring data under **Appendix 1** for individual results.

| Monitor Logation                          | February          | March 2013    | 2012-2013                                                                                                                                                                                                                                                                                 | April 2013 | Criteria | $(\mu g/m^3)$ |
|-------------------------------------------|-------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------------|
| Monitor Location                          | $2013(\mu g/m^3)$ | $(\mu g/m^3)$ | 3         2012-2013<br>Average (μg/m³)         April 2013<br>(μg/m³)         Crite<br>Annu           7.3         6.2         8           13.0         12.3         30           13.8         14.6         30           12.0         8.7         30           13.3         17.8         30 |            | Annual   | Daily         |
| PM2.5 – TEOM92<br>"Werris Creek"          | 4.7               | 5.4           | 7.3                                                                                                                                                                                                                                                                                       | 6.2        | 8        | 25            |
| PM10 – TEOM92<br>"Werris Creek"           | 8.3               | 10.3          | 13.0                                                                                                                                                                                                                                                                                      | 12.3       | 30       | 50            |
| PM10 – HVP20 "Tonsley<br>Park"            | 8.7               | 9.0           | 13.8                                                                                                                                                                                                                                                                                      | 14.6       | 30       | 50            |
| PM10 - HVP4/HVP1<br>"Eurunderee"/"Escott" | 6.0               | 9.4           | 12.0                                                                                                                                                                                                                                                                                      | 8.7        | 30       | 50            |
| PM10 – HVP20<br>"Glenara"                 | 12.2              | 8.0           | 13.3                                                                                                                                                                                                                                                                                      | 17.8       | 30       | 50            |
| PM10 – HVP98<br>"Kyooma"                  | 5.7               | 7.4           | 11.7                                                                                                                                                                                                                                                                                      | 7.2        | 30       | 50            |
| TSP – HVT98 "Kyooma"                      | 11.0              | 17.4          | 23.6                                                                                                                                                                                                                                                                                      | 12.5       | 90       | -             |

#### 2.1.2 Discussion - Compliance / Non Compliance

All PM10 and PM2.5 dust results were below or consistent with the annual average for each site and well below the annual average criteria indicating good air quality. There were no exceedances of the daily maximum criteria recorded for the period.

#### WERRIS CREEK MINE DEPOSITED DUST 2.2

Deposited dust monitoring measures particulate matter greater than 30 micron in size that readily settles out of the air related to visual impact. Dust deposition is monitored at 20 locations around WCC. Sampling is scheduled monthly in accordance with EPA guidelines and results are reported as grams per metre squared per month ( $g/m^2/month$ ).

#### 2.2.1 Monitoring Data Results

The results for the last three months are provided in the table below; however Appendix 2 has more information on Deposited Dust Monitoring Results.

| Monitor<br>Location | February 2013<br>(g/m <sup>2</sup> /month) | March 2013<br>(g/m <sup>2</sup> /month) | 2012-2013<br>Average<br>(g/m <sup>2</sup> /month) | April 2013<br>(g/m <sup>2</sup> /month) | Annual<br>Criteria<br>(g/m <sup>2</sup> /month) |
|---------------------|--------------------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------------|
| "Cintra"            | 1.9                                        | 1.1                                     | 1.5                                               | <mark>4.1</mark>                        | 4.0                                             |
| "Railway View"      | 0.6                                        | 0.3                                     | 1.4                                               | 0.7                                     | 4.0                                             |
| "Tonsley Park"      | 0.9                                        | 0.4                                     | 1.0                                               | 1.2                                     | 4.0                                             |
| "Plain View"        | 1.5                                        | 1.2                                     | 1.8                                               | 2.6                                     | 4.0                                             |
| "Marengo"           | 1.0                                        | 0.2                                     | 0.8                                               | *1.4                                    | 4.0                                             |
| "Mountain View"     | 1.2                                        | 0.4                                     | 1.5                                               | 0.7                                     | 4.0                                             |
| "Glenara"           | 0.3                                        | 0.5                                     | 1.9                                               | 0.2                                     | 4.0                                             |
| "Hazeldene"         | 0.8                                        | 0.4                                     | 0.8                                               | 0.8                                     | 4.0                                             |
| "Woodlands"         | 0.6                                        | *0.5                                    | 1.6                                               | 0.8                                     | 4.0                                             |
| "Talavera"          | 0.7                                        | *0.4                                    | 0.8                                               | 0.7                                     | 4.0                                             |
| "Kyooma"            | 0.3                                        | *0.4                                    | 1.1                                               | 0.2                                     | 4.0                                             |
| "Greenslopes"       | 0.6                                        | *0.4                                    | 0.9                                               | 0.4                                     | 4.0                                             |
| Werris Creek South  | 0.6                                        | *0.3                                    | 0.6                                               | 0.3                                     | 4.0                                             |
| Werris Creek Centre | 0.5                                        | *0.2                                    | 0.8                                               | 0.5                                     | 4.0                                             |
| "Westfall"          | 1.1                                        | 0.3                                     | 1.3                                               | 1.2                                     | 4.0                                             |
| West Street         | *3.2                                       | *0.5                                    | 0.9                                               | 0.8                                     | 4.0                                             |
| "Escott"            | 1.6                                        | 0.5                                     | 0.7                                               | *2.4                                    | 4.0                                             |
| "Eurunderee"        | 0.2                                        | 0.6                                     | 0.9                                               | 1.1                                     | 4.0                                             |
| 8 Kurrara St        | c11.9                                      | 0.4                                     | 1.1                                               | c13.7                                   | 4.0                                             |
| "Villamagna"        | 0.7                                        | 0.4                                     | 11                                                | 0.8                                     | 4.0                                             |

\* - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e. bird droppings and insects) and is excluded from the average; c - indicates sample is contaminated from a Non-Werris Creek Coal dust source and is not counted in the average

### 2.2.2 Discussion - Compliance / Non Compliance

All dust deposition gauge annual averages were below the annual criteria of 4.0g/m<sup>2</sup>/month. Dust gauges at 8 Kurrara St and "Cintra" were the only locations to record a monthly result above 4.0g/m<sup>2</sup>/month. The elevated February and April results for 8 Kurrara St were likely to have been contaminated with dust from another Werris Creek Coal

source other than mining as the two other Werris Creek dust gauges both recorded results less than 1g/m<sup>2</sup>/month for the same period. The elevated April result for "Cintra" is likely to be due to mining operations as the MIA (Mine Infrastructure Area) Dam construction site was less than 1km from the "Cintra" dust gauge assisted by the southerly winds. WCC owns the "Cintra" property and therefore the annual criteria does not apply. A number of samples were contaminated with organic matter (>50%) which is not representative of mining dust emissions.

### 2.3 QUIRINDI TRAIN DUST DEPOSITION

#### 2.3.1 Monitoring Data Results

The results for the last three months are provided in the table below; however **Appendix 3** has more information on the Train Dust Monitoring Results.

| Monitor  | February                | y <b>2013</b> | March                   | 2013   | April 2                 | Annual |                           |  |
|----------|-------------------------|---------------|-------------------------|--------|-------------------------|--------|---------------------------|--|
| Location | g/m <sup>2</sup> /month | % Coal        | g/m <sup>2</sup> /month | % Coal | g/m <sup>2</sup> /month | % Coal | (g/m <sup>2</sup> /month) |  |
| DDW30    | 0.7                     | 10%           | 0.3                     | 10%    | 0.8                     | 15%    | 1.1                       |  |
| DDW20    | 0.6                     | 15%           | 0.2                     | 15%    | 0.5                     | 15%    | 0.9                       |  |
| DDW13    | 1.0                     | 20%           | 0.7                     | 15%    | No Sample               | -      | 1.0                       |  |
|          |                         |               | Trai                    | n Line |                         |        |                           |  |
| DDE13    | 0.5                     | 15%           | No Sample               | -      | 1.0                     | 15%    | 0.9                       |  |
| DDE20    | 0.4                     | 10%           | 0.4                     | 5%     | 0.9                     | 15%    | 1.1                       |  |
| DDE30    | 1.0                     | 10%           | 0.2                     | 5%     | 0.7                     | 5%     | 1.5                       |  |

#### 2.3.2 Discussion - Compliance / Non Compliance

Overall the dust fall out levels adjacent to the train line are low (well below the impact assessment criteria nominated by the EPA of 4.0 g/m<sup>2</sup>/month) and comparable to the levels monitored around WCC. No sample was collected from DDE13 for March and DDW13 for April as the dust gauge bottle was found broken.

#### 2.4 AIR QUALITY COMPLAINTS

There were two dust complaints received during this period from Werris Creek residents. Both dust complaints from the 3<sup>rd</sup> and 28<sup>th</sup> April 2013 were related to seeing dust clouds in the mornings over the top of the WCC mine site. A review of weather conditions identified that temperature inversions and low wind speeds were present on both mornings that resulted in dust emissions being trapped underneath the inversion layer. The inversion does not allow the dust to disperse but concentrates the dust and combined with the low light conditions, makes the dust cloud visible when under normal weather conditions it would not be present. The real time PM10 dust levels in Werris Creek were less than 30µg/m<sup>3</sup> good air quality threshold; demonstrating that this is a localized event not impacting on Werris Creek township. Specific actions taken in relation to each of these complaints are outlined in **Section 6**.

# 3.0 NOISE

#### 3.1 OPERATIONAL NOISE

Monthly attended noise monitoring is undertaken representative of the following 17 properties from 13 monitoring points below. Attended noise monitoring was undertaken twice for either 60 minutes at privately owned properties or 15 minutes at properties with private agreements; representative of the day period and the evening/night period.

- A "Rosehill" R5;
- o B1 "Almawille" (private agreement) R8;
- o B1 83 Wadwells Lane R7;
- o B2 "Mountain View" R22;
- o B2 "Gedhurst" R9;
- C "Meadholme" (private agreement) R10;
- C "Glenara" (private agreement) R11;
- o D "Hazeldene" R24;
- o E "Railway Cottage" R12;
- o F "Talavera" R96;

- o G R97;
- o H "Kyooma" (private agreement) R98;
- I Kurrara St, Werris Creek;
- o J Coronation Ave, Werris Creek;
- o K "Tonsley Park" (private agreement) R20;
- o K "Alco Park" (private agreement) R21; and
- o L R103.

#### 3.1.1 Monitoring Data Results

The WCC operations only noise level (not ambient noise) results for the last three months are outlined below; however see Monthly Noise Monitoring Reports under **Appendix 4** for more detail.

|    | Loodian                     | Day dB(A)       | Criteria dB(A)        | Evening/Night               | Criteria dB(A)        |
|----|-----------------------------|-----------------|-----------------------|-----------------------------|-----------------------|
|    | Location                    | Leq 15min       | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| Α  | "Rosehill" R5               | Inaudible       | 35                    | Inaudible#                  | 35                    |
| B1 | West Quipolly R7, R8*       | Inaudible#      | 37                    | 34                          | 37                    |
| B2 | West Quipolly R9 & R22      | Inaudible#      | 37/36 <sup>1</sup>    | Inaudible#                  | 37/36 <sup>1</sup>    |
| С  | Central Quipolly R10*, R11* | Inaudible       | 39                    | Inaudible#                  | 39                    |
| D  | "Hazeldene" R24             | Inaudible #     | 37                    | Inaudible#                  | 37                    |
| Е  | "Railway Cottage" R12       | Inaudible#      | 38                    | Barely audible              | 38                    |
| F  | "Talavera" R96              | Inaudible       | 38                    | Inaudible#                  | 37                    |
| G  | R97                         | Inaudible #     | 35                    | 20#                         | 35                    |
| Н  | " <b>Kyooma"</b> R98*       | Barely audible# | 36                    | 23#                         | 36                    |
| Ι  | Kurrara St, WC              | Inaudible#      | 35                    | Inaudible                   | 35                    |
| J  | Coronation Ave, WC          | Inaudible#      | 35                    | Inaudible#                  | 35                    |
| K  | South St, WC R20*, R21*     | Inaudible#      | 39                    | Inaudible                   | 37                    |
| L  | West St, WC R103            | Inaudible#      | 35                    | Inaudible                   | 35                    |
|    | Doil Snur                   |                 | 35                    |                             |                       |
|    | Kan Spur                    |                 | 35                    |                             |                       |

#### Wednesday 6<sup>th</sup> February 2013

 $\begin{array}{l} WC-Werris\ Creek;\ *\ -\ Private\ agreement\ in\ place\ with\ resident;\ Yellow\ Bold-Elevated\ noise;\ \#\ Adverse\ weather\ with\ wind\ >3m/s,\ temperature\ inversions\ >+12^{o}C/100m\ or\ >2m/s\ and\ >0^{o}C/100m;\ 1-R22\ criteria\ is\ 36\ dB(A)\ L_{eq\ 15min}\ while\ R9\ is\ 37\ dB(A)\ L_{eq\ 15min}\ begin{tabular}{l}$ 

#### Wednesday 27<sup>th</sup> March 2013

|    | Location                    | Day dB(A)             | Criteria dB(A)        | Evening/Night        | Criteria dB(A)        |
|----|-----------------------------|-----------------------|-----------------------|----------------------|-----------------------|
|    |                             | L <sub>eq 15min</sub> | L <sub>eq</sub> 15min | $dB(A) L_{eq 15min}$ | L <sub>eq</sub> 15min |
| Α  | "Rosehill" R5               | Inaudible             | 35                    | Inaudible            | 35                    |
| B1 | West Quipolly R7, R8*       | Inaudible             | 37                    | 25                   | 37                    |
| B2 | West Quipolly R9 & R22      | 22                    | 37/36 <sup>1</sup>    | 25                   | 37/36 <sup>1</sup>    |
| С  | Central Quipolly R10*, R11* | Inaudible             | 39                    | 32                   | 39                    |
| D  | "Hazeldene" R24             | Inaudible             | 37                    | 25                   | 37                    |
| Е  | "Railway Cottage" R12       | Inaudible             | 38                    | 20#                  | 38                    |
| F  | "Talavera" R96              | 15                    | 38                    | 30                   | 37                    |
| G  | R97                         | 20                    | 35                    | 17                   | 35                    |
| Н  | "Kyooma" R98*               | 20                    | 36                    | 15                   | 36                    |
| Ι  | Kurrara St, WC              | Inaudible             | 35                    | Inaudible            | 35                    |
| J  | Coronation Ave, WC          | Inaudible             | 35                    | 32                   | 35                    |
| Κ  | South St, WC R20*, R21*     | Inaudible             | 39                    | 32                   | 37                    |
| L  | West St, WC R103            | Inaudible             | 35                    | Inaudible            | 35                    |
|    | Doil Spur                   |                       | 35                    |                      |                       |
|    | Kan Spul                    |                       | 35                    |                      |                       |

WC – Werris Creek; \* - Private agreement in place with resident; Yellow Bold – Elevated noise; # Adverse weather with wind >3m/s, temperature inversions >+12°C/100m or >2m/s and >0°C/100m; 1 – R22 criteria is 36 dB(A) L<sub>eq 15min</sub> while R9 is 37 dB(A) L<sub>eq 15min</sub>

#### Tuesday 23<sup>rd</sup> April 2013

|    | Location                    | Day dB(A)             | Criteria dB(A)        | Evening/Night               | Criteria dB(A)        |
|----|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
|    | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| А  | "Rosehill" R5               | Inaudible             | 35                    | Inaudible                   | 35                    |
| B1 | West Quipolly (R7, R8*)     | Inaudible             | 37                    | 32                          | 37                    |
| B2 | West Quipolly (R9 & R22)    | 20                    | 37/36 <sup>1</sup>    | 25                          | 37/36 <sup>1</sup>    |
| С  | Central Quipolly(R10*,R11*) | Barely audible        | 39                    | Inaudible                   | 39                    |
| D  | "Hazeldene" R24             | Barely audible        | 37                    | Inaudible                   | 37                    |
| Е  | "Railway Cottage" R12       | Inaudible#            | 38                    | 20                          | 38                    |
| F  | "Talavera" R96              | 25                    | 38                    | 26                          | 37                    |
| G  | R97                         | 15#                   | 35                    | 34                          | 35                    |
| Η  | "Kyooma" R98*               | 26                    | 36                    | 34                          | 36                    |
| Ι  | Kurrara St, WC              | Inaudible#            | 35                    | 32                          | 35                    |
| J  | Coronation Ave, WC          | Inaudible#            | 35                    | Inaudible                   | 35                    |
| Κ  | South St, WC (R20*, R21*)   | Inaudible             | 39                    | 32                          | 37                    |
| L  | West St, WC (R103)          | Inaudible             | 35                    | 32                          | 35                    |
|    | Doil Spur                   |                       | 35                    |                             |                       |
|    | Kan Spur                    |                       | 35                    |                             |                       |

WC – Werris Creek; \* - Private agreement in place with resident; Yellow Bold – Elevated noise; # Adverse weather with wind >3m/s, temperature inversions >+12°C/100m or >2m/s and >0°C/100m; 1 – R22 criteria is 36 dB(A)  $L_{eq 15min}$  while R9 is 37 dB(A)  $L_{eq 15min}$ 

#### 3.1.2 Discussion - Compliance / Non Compliance

There were no noise exceedances during February, March and April 2013. The last recorded noise exceedance was over two years ago in October 2010.

#### 3.2 NOISE COMPLAINTS

There were three noise complaints during the period; two related to open cut operations and one related to train noise. The noise complaints related to open cut mining operations were actively monitored in real time by the Noise Control Operator managing noise levels and suspending activities as required. Investigation into the complaints found that on each occasion the mine was in compliance. The train noise complaint was about activities in the Werris Creek rail yard and is unrelated to WCC operations. Specific actions taken in relation to each of these complaints are outlined in **Section 6**.

### 4.0 BLAST

Blast monitoring was undertaken at "Glenara", "Talavera", "Werris Creek" and "Tonsley Park" during the period. Compliance limits for blasting overpressure is 115dBL (and up to 120dBL for only 5% of blasts) and vibration is 5mm/s (and up to 10mm/s for only 5% of blasts). During the period a total of 22 blasts were fired by the blasting contractor, Orica Mining Services.

#### 4.1 BLAST MONITORING

#### 4.1.1 Monitoring Data Results

The summary tables of blasting results over the last three months are provided below; however see the blasting results database under **Appendix 5** for more detail.

| Echmicany 2012         | "Glenara" |        | "Tonsley Park" |       | Werris Creek |       | "Talavera" |        |  |
|------------------------|-----------|--------|----------------|-------|--------------|-------|------------|--------|--|
| February 2015          | mm/s      | dB(L)  | mm/s           | dB(L) | mm/s         | dB(L) | mm/s       | dB(L)  |  |
| Monthly Average        | < 0.25    | <109.8 | 1.40           | 105.8 | 0.44         | 101.8 | < 0.25     | <109.8 |  |
| Monthly Maximum        | < 0.25    | <109.8 | 1.83           | 106.6 | 0.58         | 103.0 | < 0.25     | <109.8 |  |
| Annual Average         | 0.21      | 104.5  | 0.93           | 102.2 | 0.41         | 99.1  | 0.29       | 105.4  |  |
| Criteria               | 5         | 115    | 5              | 115   | 5            | 115   | 5          | 115    |  |
| % >115dB(L) or 5mm/s   | 0%        | 0%     | 0%             | 0%    | 0%           | 0%    | 0%         | 0%     |  |
| # Triggered this Month | 0         | 0/7    |                | 4/7   |              | 3/7   |            | 0/7    |  |

NM – Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| March 2013      | "Glenara" |        | "Tonsley Park" |       | Werris Creek |        | "Talavera" |       |
|-----------------|-----------|--------|----------------|-------|--------------|--------|------------|-------|
|                 | mm/s      | dB(L)  | mm/s           | dB(L) | mm/s         | dB(L)  | mm/s       | dB(L) |
| Monthly Average | < 0.25    | <109.8 | 0.64           | 102.3 | 0.45         | 106.8  | 0.52       | 104.2 |
| Monthly Maximum | < 0.25    | <109.8 | 0.98           | 113.9 | 0.69         | 109*.3 | 0.55       | 107.5 |
| Annual Average  | 0.21      | 104.5  | 0.91           | 102.2 | 0.42         | 99.8   | 0.31       | 105.3 |

| N. 1 2012              | "Gle | nara" | "Tonsl | ev Park" | Werris | Creek | "Tala | vera" |
|------------------------|------|-------|--------|----------|--------|-------|-------|-------|
| March 2013             | mm/s | dB(L) | mm/s   | dB(L)    | mm/s   | dB(L) | mm/s  | dB(L) |
| Criteria               | 5    | 115   | 5      | 115      | 5      | 115   | 5     | 115   |
| % >115dB(L) or 5mm/s   | 0%   | 0%    | 0%     | 0%       | 0%     | 0%    | 0%    | 0%    |
| # Triggered this Month | 0    | /7    | ,      | 7/7      | 3      | /7    | 2     | /7    |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| Amril 2012                             | "Gle | nara" | "Tonsl | ey Park"   | Werris            | s Creek | "Tala  | vera"  |
|----------------------------------------|------|-------|--------|------------|-------------------|---------|--------|--------|
| April 2013                             | mm/s | dB(L) | mm/s   | dB(L)      | mm/s              | dB(L)   | mm/s   | dB(L)  |
| Monthly Average                        | 0.26 | 102.4 | 0.89   | 102.6      | 0.66              | 103.9   | < 0.25 | <109.8 |
| Monthly Maximum                        | 0.38 | 109.7 | 1.45   | 108.9      | <mark>1.19</mark> | 108.3   | < 0.25 | <109.8 |
| Annual Average                         | 0.26 | 102.4 | 0.89   | 102.6      | 0.66              | 103.9   | < 0.25 | <109.8 |
| Criteria                               | 5    | 115   | 5      | 115        | 5                 | 115     | 5      | 115    |
| % >115dB(L) or 5mm/s                   | 0%   | 0%    | 0%     | 0%         | 0%                | 0%      | 0%     | 0%     |
| # Triggered this Month                 | 2    | /8    | (      | 5/8        | 4,                | /8      | 0.     | /8     |
| NM Cite and an an ite and which had in |      |       |        | 4 <b>1</b> | Le estim en entre | Valler  |        |        |

NM – Site not monitored;\* Indicates project related properties not subject to blasting criteria; Yellow – vibration >1 mm/s.

#### 4.1.2 Discussion - Compliance / Non Compliance

All blasts over the period complied with maximum license limits (120d(B)L and 10mm/s) with no blast overpressure levels above 115dB(L) or vibration levels over 5mm/s for the three month period. One blast on the 8th April exceeded the Werris Creek target of 1mm/s and also resulted in 2 complaints. In total there were five G Coal interburden blast related complaints with an independent blasting consultant working with Orica to review the design of these blasts.

#### 4.2 BLAST COMPLAINTS

There were eleven blast complaints during the period from three separate blast events. The blast on 8<sup>th</sup> February 2013 resulted in six complaints from Werris Creek residents. While the blast results were in compliance, an investigation identified improvements to be made to the blasting process. The blast on 8<sup>th</sup> April 2013 resulted in two complaints from Werris Creek residents. While the blast results were in compliance, the Werris Creek monitor recorded a blast vibration greater than 1mm/s because instead of splitting the shot into two horizons, the G Coal Interburden blast was fired in one shot the full 45m thickness. The blast on 11<sup>th</sup> February 2013 resulted in three complaints from Werris Creek residents. While the blast results were in compliance, the blasting contractor could not identify what had caused the complaints so Whitehaven Coal engaged an independent blasting expert to review G Coal Interburden blast designs and identify improvements. Specific actions taken in relation to these complaints are outlined in **Section 6**.

# 5.0 WATER

The groundwater monitoring program monitors groundwater levels bi-monthly and groundwater quality six monthly. Surface water monitoring is undertaken quarterly. There were two surface water discharge events during the period.

#### 5.1 GROUND WATER

Groundwater monitoring is undertaken to monitor if there are any impacts on groundwater quality and levels as a result of the mining operations. WCC monitors 35 groundwater bores and piezometers in the key aquifers surrounding the mine including Werris Basalt (near to WCC and further afield) and Quipolly Creek Alluvium. Bi-monthly groundwater level monitoring and groundwater quality monitoring was completed on 25<sup>th</sup> and 26<sup>th</sup> March 2013.

#### 5.1.1 Monitoring Data Results

A summary of groundwater monitoring results is provided below with the laboratory reports provided in **Appendix 6**.

| Site         | Le    | evel | <b>p</b> ] | H   | ]         | EC           | Comments                                             |
|--------------|-------|------|------------|-----|-----------|--------------|------------------------------------------------------|
|              |       |      |            | We  | rrie Basa | lt – Near W  | CC Mine                                              |
| MW1          | 54.10 | -1%  | 7.22       | -4% | 1220      | -4%          | "Hillview" likely to be affected by mine advancement |
| MW2          | 25.42 | 3%   | 7.62       | -4% | 848       | -4%          |                                                      |
| MW3          | 15.13 | 4%   | 7.15       | -3% | 245       | -1280%       | False EC reading due to fresh water in bore. Retest  |
| MW4B         | 10.39 | 7%   | 7.77       | -2% | 1020      | 0%           |                                                      |
| MW5          | 7.69  | 14%  | 7.64       | -1% | 2390      | 1%           |                                                      |
| MW5B         | 7.28  | 14%  |            |     |           |              |                                                      |
| MW6          | 12.47 | 0%   | 7.43       | -4% | 1870      | -3%          |                                                      |
| MW27         | 41.43 | -3%  |            |     |           |              | "Cintra" likely to be affected by mine advancement   |
|              |       |      |            |     | We        | errie Basalt |                                                      |
| MW8          | 14.1  | 7%   |            |     |           |              |                                                      |
| MW9          | 15.47 | 0%   |            |     |           |              |                                                      |
| MW10         | 17.21 | 2%   |            |     |           |              |                                                      |
| MW14         | 16.71 | 2%   |            |     |           |              |                                                      |
| MW14B        | 16.47 | 2%   |            |     |           |              |                                                      |
| <b>MW17B</b> | 9.53  | 5%   |            |     |           |              |                                                      |
| MW19A        | 6.89  | -12% |            |     |           |              | Retest found level 6.03m. OK                         |
| MW20         | 19.39 | 0%   |            |     |           |              |                                                      |
|              |       |      |            |     | Quip      | olly Alluviu | m                                                    |
| MW7          | 4.20  | 2%   |            |     |           |              |                                                      |
| MW7B         | 4.25  | 3%   |            |     |           |              |                                                      |
| MW12         | 7.03  | 22%  |            |     |           |              |                                                      |
| MW13         | 4.40  | 13%  |            |     |           |              |                                                      |
| MW13B        | 3.11  | 12%  |            |     |           |              |                                                      |
| MW13D        | 4.37  | 16%  |            |     |           |              |                                                      |
| MW15         | 3.92  | 14%  |            |     |           |              |                                                      |
| MW16         | 4.37  | 16%  |            |     |           |              |                                                      |
| MW17A        | 3.49  | 19%  |            |     |           |              |                                                      |
| MW18A        | 3.30  | 19%  |            |     |           |              |                                                      |
| MW21A        | 6.32  | 12%  |            |     |           |              |                                                      |
| MW22A        | 4.46  | 16%  |            |     |           |              |                                                      |
| MW22B        | 4.63  | 14%  |            |     |           |              |                                                      |
| MW23A        | 3.47  | 11%  |            |     |           |              |                                                      |
| MW23B        | 4.04  | 8%   |            |     |           |              |                                                      |
| MW28A        | 8.97  | 11%  |            |     |           |              |                                                      |
| MW32         | 3.67  | 8%   |            |     |           |              |                                                      |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; Dip – is distance in meters from top of bore to groundwater surface; Red – Greater than 15% change/potential compliance issue; Orange – Change decrease; Green – change increase or no change.

#### 5.1.2 Discussion - Compliance / Non Compliance

The groundwater quality indicates a freshening of aquifers due to heavy rain events from Christmas to the end of February 2013. The majority of groundwater bore water levels increased also as a result of the heavy rain events.

### 5.2 SURFACE WATER

Surface water monitoring is undertaken from local creeks offsite as well as from discharge point dirty water dams to monitor for potential water quality issues. Quarterly surface water monitoring was undertaken on 12<sup>th</sup> March 2013.

#### 5.2.1 Monitoring Data Results

Summary of surface water quality monitoring results is provided below with the laboratory reports provided in **Appendix 7**.

| Site | pН   | EC   | TSS | O&G | Change from Previous Quarter                                           |
|------|------|------|-----|-----|------------------------------------------------------------------------|
|      |      |      |     |     | ONSITE                                                                 |
| SB2  | 7.64 | 399  | 24  | <5  | pH decreased 1.44, EC decreased 190, TSS decreased 9, O&G no change.   |
| SB9  | 7.53 | 236  | 327 | <5  | pH decreased 0.83, EC decreased 182, TSS increased 274, O&G no change. |
| SB10 | 7.64 | 195  | 168 | <5  | pH decreased 0.67, EC decreased 291, TSS increased 146, O&G no change. |
|      |      |      |     |     | OFFSITE                                                                |
| QCU  | 7.39 | 467  | <5  | <5  | pH decreased 0.64, EC no change, TSS decreased 13, O&G no change.      |
| QCD  | 7.77 | 768  | 16  | <5  | pH decreased 0.21, EC decreased 47, TSS increased 11, O&G no change.   |
| WCU  | 8.06 | 868  | 8   | <5  | Previously dry.                                                        |
| WCD  | 8.31 | 1030 | 24  | <5  | pH decreased 0.04, EC decreased 230, TSS decreased 12, O&G no change.  |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; TSS – Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G – Oil and Grease measures amount of hydrocarbons (oils and fuels) in water; Orange – Issue with water quality; Green – water quality OK.

#### 5.2.2 Discussion - Compliance / Non Compliance

All onsite and offsite water quality is consistent with longer term averages and within the site water management plan trigger values.

#### 5.3 SURFACE WATER DISCHARGES

#### 5.3.1 Monitoring Data Results

There were two wet weather discharge events during the period. A summary of discharge monitoring results is provided below with the laboratory reports provided in **Appendix 8**.

| Date       | Dam | pН   | EC  | TSS             | 0&G | Compliance                                  | Туре        | 5 Day<br>Rain |
|------------|-----|------|-----|-----------------|-----|---------------------------------------------|-------------|---------------|
| 25/02/2013 | SB2 | 7.97 | 281 | <mark>62</mark> | <5  | Compliant – TSS OK because Rainfall >39.2mm | Wet Weather | 116.4         |
| 25/02/2013 | SB9 | 7.28 | 158 | <mark>82</mark> | <5  | Compliant – TSS OK because Rainfall >39.2mm | Wet Weather | 116.4         |
| Crite      | ria | 8.5  | N/A | 50              | 10  |                                             |             |               |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; TSS – Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G – Oil and Grease measures amount of hydrocarbons (oils and fuels) in water; Yellow – indicates results outside criteria due to 5 day rain >39.2mm.

#### 5.3.2 Discussion - Compliance / Non Compliance

Although the Total Suspended Solids (sediment) levels were greater than 50mg/L; all dirty water discharge results were in compliance with WCC's Environmental Protection Licence 12290 because the 5 day rainfall total exceeded 39.2mm and there were no impacts on water quality monitored in Quipolly and Werris Creeks' catchments as a result of the dirty water discharge events.

#### 5.3 WATER COMPLAINTS

There were no noise complaints during the period.

#### 6.0 COMPLAINTS SUMMARY

There were sixteen complaints received during the period with the details summarised below. There were eleven complaints related to blasting; three complaints relating to noise and two complaints related to dust. There were thirteen different complainants during the period with fourteen complaints from Werris Creek residents and two complaints from Quipolly residents.

| #                | Date                  | Complainant                   | Complaint                                                                                                                                                                      | Investigation                                                                                                                                                                                                                                                                              | Action Taken                                                                                                                                                             |
|------------------|-----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 271<br>to<br>276 | 08/02/2013<br>1:17pm  | Various<br>Werris Creek       | The complainants allege<br>that the blast on<br>08/02/13 shook their<br>homes and rattled<br>objects inside.                                                                   | WCC shot #9-2013 (S16_2-4_385)<br>performed as expected and all community<br>monitoring location in compliance.<br>Investigation did not identify a reason for<br>the blast causing the complaints but did<br>identify actions to improve processes and<br>procedures around blast design. | A written response<br>provided to the<br>complainants. Property<br>investigation by structural<br>engineer organised for one<br>complaint of alleged<br>property damage. |
| 277              | 21/02/2013<br>11:09am | C<br>Werris Creek             | Complainant stated that<br>the mine noise was high<br>(loud) at 11pm on<br>20/02/13.                                                                                           | Noise levels and audio from Werris Creek<br>noise monitor demonstrate that rail noise is<br>major component of elevated noise levels.<br>WCC mine noise very infrequently audible<br>and in compliance.                                                                                    | A written response<br>provided to the<br>complainant.                                                                                                                    |
| 278              | 27/02/2013<br>11:50pm | L<br>Quipolly                 | Complainant stated that<br>the mine noise was<br>"ridiculous" at midnight<br>on 27/02/13 and<br>questioned why the mine<br>noise was louder than it<br>had been for some time. | Noise levels and audio from Quipolly noise<br>monitor demonstrate that there were no<br>elevated noise levels and mining noise was<br>in compliance with the criteria. OCE not<br>required to change mining operations.                                                                    | A written response<br>provided to the<br>complainant.                                                                                                                    |
| 279              | 03/04/2013<br>10:51am | Y<br>Werris Creek             | Big dust cloud sitting<br>over the top of the coal<br>mine on Wednesday 3 <sup>rd</sup><br>April 2013 morning.                                                                 | Inversion present trapping dust emissions.<br>Werris Creek real time PM10 dust levels<br><30µg/m3 and in compliance.                                                                                                                                                                       | Written response provided<br>to complainant.                                                                                                                             |
| 280-<br>281      | 08/04/2013<br>Various | Various<br>Werris Creek       | Blast caused significant ground movement and shaking houses.                                                                                                                   | WCC shot #23-2013 (S11_6-10_Gcoal)<br>was fired at 12:12pm on Monday 8 <sup>th</sup> April<br>2013 was in compliance. Blast in bottom of<br>pit previously caused complaints.                                                                                                              | Written response provided<br>to complainant. Visited<br>complainant during next<br>blast event.                                                                          |
| 282-<br>284      | 11/04/2013<br>Various | Various<br>Werris Creek       | Blast caused significant<br>ground movement and<br>shaking houses.                                                                                                             | WCC shot #24-2013 (S11_12-17_Gcoal)<br>was fired at 1:17pm on Thursday 11 <sup>th</sup> April<br>2013 was in compliance. Blast in bottom of<br>pit previously caused complaints. Orica<br>could not identify cause of complaints.                                                          | Written response provided<br>to complainant.<br>Independent blast<br>consultant engaged to<br>review Orica blast designs<br>for G Coal interburden.                      |
| 285              | 19/04/2013<br>11:39am | EPA/Anonymous<br>Werris Creek | Noise from coal train<br>shunting on Thursday<br>18 <sup>th</sup> April 2013 between<br>20:00 hrs and 03:00 hrs.                                                               | Wind direction not towards Werris Creek<br>so TLO noise would not be propagated or<br>enhanced.                                                                                                                                                                                            | Written response provided to EPA.                                                                                                                                        |
| 286              | 28/04/2013<br>9:15am  | Z<br>Quipolly                 | Mine has been dusty since day break.                                                                                                                                           | Inversion present trapping dust emissions.<br>Werris Creek real time PM10 dust levels<br><15µg/m3 and in compliance.                                                                                                                                                                       | Written response provided to EPA.                                                                                                                                        |

# 7.0 GENERAL

Please feel free to ask any questions in relation to the information contained within this document during Item 7 of the meeting agenda.

Regards Andrew Wright Environmental Officer

# Appendix 1 – Dust Monitoring Results – PM10

#### Werris Creek Coal HVAS TEOM Dust Monitoring 2012-2013

| Site                   | e 2.5TEOM92<br>Werris | Monthly     | Annual  | 10TEOM92<br>Werris | EPL#30<br>Monthly | Annual  | HVP20<br>Tonsley | EPL#1<br>Monthly | Rolling | HVP98       | EPL#28<br>Monthly | Rolling | HVP1        | Monthly    | Rolling | HVP11       | EPL#29<br>Monthly | Rolling | HVT98        | Monthly     | Rolling      | PM10<br>24br | PM10<br>Appual | TSP     |
|------------------------|-----------------------|-------------|---------|--------------------|-------------------|---------|------------------|------------------|---------|-------------|-------------------|---------|-------------|------------|---------|-------------|-------------------|---------|--------------|-------------|--------------|--------------|----------------|---------|
| Date                   | e Creek               | Summary     | Average | Creek              | Summary           | Average | Park             | Summary          | Average | Kyooma      | Summary           | Average | Escott      | Summary    | Average | Glenara     | Summary           | Average | Kyooma       | Summary     | Average      | Limit        | Average        | Average |
| 02-Apr-12              | 1                     |             |         | 22                 | 6.2               |         | 19               | 7.5              | 19.0    | 29          | 12.2              | 28.6    | 18          | 8.2        | 17.6    | 18          | 8.2               | 17.6    | 66           | 22.0        | 66.4         | 50           | 30             | 90      |
| 08-Apr-12              |                       |             |         | 12                 | 15.9              | 15.9    | 16               | 15.3             | 17.6    | 23.2        | 22.6              | 25.9    | 20          | 15.1       | 18.8    | 20          | 15.1              | 18.8    | 53           | 55.3        | 59.6         | 50           | 30             | 90      |
| 14-Apr-12              |                       |             |         | 6                  | 17.2              |         | 8                | 17.4             | 14.2    | 12          | 24.8              | 21.3    | 8           | 16.0       | 15.3    | 8           | 16.0              | 15.3    | 22           | 59.6        | 47.0         | 50           | 30             | 90      |
| 20-Apr-12              |                       |             |         | 23                 | 23.0              |         | 19               | 19.0             | 15.3    | 26          | 28.6              | 22.6    | 14          | 20.0       | 15.1    | 14          | 20.0              | 15.1    | 80           | 79.9        | 55.3         | 50           | 30             | 90      |
| 26-Apr-12<br>02-May-12 |                       |             |         | 12                 | 11 /              |         | 13               | 12.6             | 14.9    | 8           | 8.4               | 21.5    | 13          | 11.8       | 14.7    | 13          | 11.8              | 14.7    | 27.5         | 27.5        | 50.0<br>50.4 | 50           | 30             | 90      |
| 02-May-12              | -                     |             |         | 26                 | 15.3              | 15.6    | 20               | 17.9             | 15.3    | 49          | 19.9              | 23.6    | 18          | 14.2       | 14.0    | 18          | 14.2              | 15.0    | 114          | 51.3        | 59.5         | 50           | 30             | 90      |
| 14-May-12              | 2                     |             |         | 15                 | 12.4              |         | 27               | 17.1             | 16.7    | 12          | 12.8              | 22.2    | 15          | 14.0       | 15.0    | 15          | 14.0              | 15.0    | 33           | 33.0        | 56.2         | 50           | 30             | 90      |
| 20-May-12              | 2                     |             |         | 12                 | 25.8              |         | 17               | 26.7             | 16.8    | 13          | 48.8              | 21.1    | 12          | 17.7       | 14.6    | 12          | 17.7              | 14.6    | 28           | 114.0       | 53.0         | 50           | 30             | 90      |
| 26-May-12              | 2                     |             |         | 4                  |                   |         | 5                |                  | 15.6    | 4           |                   | 19.4    | 3           |            | 13.5    | 3           |                   | 13.5    | 6            |             | 48.3         | 50           | 30             | 90      |
| 01-Jun-12              |                       |             |         | 19                 |                   |         | 12               |                  | 15.2    | 8           |                   | 18.4    | 4           |            | 12.6    | 4           |                   | 12.6    | 20           |             | 45.7         | 50           | 30             | 90      |
| 07-Jun-12              |                       |             |         | 12                 | 3.7               | 14.4    | 0                | 4.8              | 14.5    | 5           | 3.3               | 17.1    | 3           | 3.2        | 11.8    | 3           | 3.2               | 11.8    | 16           | 5.5<br>24 E | 42.5         | 50           | 30             | 90      |
| 13-Jun-12              |                       |             |         | 10                 | 11.8              | 14.4    | 9                | 9.4              | 13.7    | 13          | 6.6               | 16.0    | 8           | 5.2        | 11.4    | 8           | 5.2               | 11.4    | 31           | 18.3        | 39.8         | 50           | 30             | 90      |
| 25-Jun-12              |                       |             |         | 17                 | 18.7              |         | 15               | 15.4             | 13.8    | 31          | 31.2              | 17.0    | 17          | 17.4       | 11.6    | 17          | 17.4              | 11.6    | 67           | 66.6        | 41.6         | 50           | 30             | 90      |
| 01-Jul-12              |                       |             |         | 10                 |                   |         | 9                |                  | 13.5    | 4           |                   | 16.2    | 5           |            | 11.2    | 5           |                   | 11.2    | 7            |             | 39.5         | 50           | 30             | 90      |
| 07-Jul-12              |                       |             |         | 8                  | 6.3               |         | 8                | 6.3              | 13.2    | 5           | 3.0               | 15.5    | 7           | 4.8        | 10.9    | 14          | 5.2               | 11.4    | 5            | 4.8         | 37.5         | 50           | 30             | 90      |
| 13-Jul-12              |                       |             |         | 8                  | 8.6               | 13.0    | 8                | 8.5              | 12.9    | 5           | 4.5               | 14.9    | 5           | 6.6        | 10.6    | 6           | 8.4               | 11.0    | 5            | 6.1         | 35.6         | 50           | 30             | 90      |
| 19-Jul-12              |                       |             |         | 11                 | 8.3               |         | 11               | 8.3              | 12.8    | 6           | 4.5               | 14.4    | 5           | 5.2        | 10.3    | 9           | 7.9               | 10.9    | 8            | 5.2         | 34.2         | 50           | 30             | 90      |
| 25-Jul-12              |                       |             |         | 6<br>17            | 10.7              |         | 6<br>18          | 10.7             | 12.5    | 3           | 5.8               | 13.9    | 10          | 10.4       | 10.3    | 8<br>16     | 14.2              | 10.8    | 5            | 8.2         | 32.7         | 50           | 30             | 90      |
| 06-Aug-12              | 2                     |             |         | 10                 | 7.1               |         | 10               | 7.1              | 12.6    | 6           | 5.3               | 13.4    | 7           | 4.8        | 10.3    | 9           | 8.6               | 10.9    | 13           | 10.7        | 31.0         | 50           | 30             | 90      |
| 12-Aug-12              |                       |             |         | 9                  | 10.4              | 12.5    | 10               | 10.9             | 12.5    | 10          | 8.6               | 13.2    | 9           | 9.6        | 10.3    | 11          | 12.0              | 10.9    | 15           | 13.9        | 30.3         | 50           | 30             | 90      |
| 18-Aug-12              | 2                     |             |         | 7                  | 9.0               |         | 7                | 9.8              | 12.3    | 5           | 10.1              | 12.9    | 5           | 9.0        | 10.1    | 11          | 10.8              | 10.9    | 11           | 14.6        | 29.5         | 50           | 30             | 90      |
| 24-Aug-12              | 2                     |             |         | 9                  | 17.0              |         | 10               | 17.8             | 12.2    | 11          | 10.6              | 12.8    | 12          | 15.0       | 10.2    | 14          | 16.3              | 11.0    | 16           | 16.3        | 29.0         | 50           | 30             | 90      |
| 30-Aug-12              | 2                     |             |         |                    | 7.0               |         | 17               | 40.0             | 12.4    | 20          | 10.0              | 13.1    | 15          |            | 10.4    | 19          |                   | 11.3    | 30           | 47.0        | 29.0         | 50           | 30             | 90      |
| 05-Sep-12              | 2                     | 3.1         |         |                    | 7.3               | 42.0    | 23               | 10.8             | 12.8    | 19          | 10.8              | 13.3    | 30          | 6.9        | 11.1    | 29          | 9.1               | 12.0    | 30           | 17.3        | 29.1         | 50           | 30             | 90      |
| 17 Sop 12              |                       | 0.9<br>9.1  | 8.9     |                    | 10.0              | 13.0    | 29               | 20.5             | 13.4    | 17          | 10.1              | 13.0    | 20          | 16.4       | 11.0    | 20<br>17    | 20.5              | 12.0    | 20           | 20.0        | 29.3         | 50           | 30             | 90      |
| 23-Sep-12              |                       | 16.4        |         |                    | 26.5              |         | 11               | 29.2             | 13.6    | 11          | 23.1              | 13.7    | 7           | 29.8       | 11.6    | 9           | 29.2              | 12.6    | 17           | 35.8        | 28.9         | 50           | 30             | 90      |
| 29-Sep-12              | 2                     |             |         |                    |                   |         | 14               |                  | 13.6    | 8           |                   | 13.5    | 15          |            | 11.7    | 13          |                   | 12.6    | 16           |             | 28.5         | 50           | 30             | 90      |
| 05-Oct-12              |                       | 2.3         |         |                    | 4.6               |         | 17               | 7.3              | 13.7    | 12          | 5.6               | 13.5    | 19          | 11.2       | 11.9    | 20          | 9.7               | 12.9    | 21           | 14.4        | 28.2         | 50           | 30             | 90      |
| 11-Oct-12              | 1                     | 10.7        | 9.8     |                    | 18.1              | 13.7    | 7                | 14.6             | 13.5    | 6           | 11.6              | 13.2    | 11          | 15.7       | 11.9    | 10          | 15.8              | 12.8    | 14           | 23.2        | 27.8         | 50           | 30             | 90      |
| 17-Oct-12              |                       | 10.1        |         |                    | 17.7              |         | 22               | 14.4             | 13.8    | 23          | 9.1               | 13.5    | 18          | 15.3       | 12.1    | 25          | 13.2              | 13.1    | 47           | 17.8        | 28.4         | 50           | 30             | 90      |
| 23-Oct-12              |                       | 29.1        |         |                    | 41.4              |         | 12               | 22.0             | 13.7    | 9<br>10     | 22.6              | 13.4    | 15          | 19.2       | 12.2    | 11          | 24.9              | 13.1    | 18           | 46.9        | 28.1         | 50           | 30             | 90      |
| 04-Nov-12              |                       | 0.0         |         |                    | 2.7               |         | 23               | 8.9              | 14.1    | 19          | 5.7               | 13.7    | 23          | 8.7        | 12.6    | 25          | 7.7               | 13.4    | 27           | 10.4        | 28.0         | 50           | 30             | 90      |
| 10-Nov-12              | 2                     | 6.8         | 8.8     |                    | 14.3              | 13.8    | 9                | 24.1             | 14.2    | 6           | 15.3              | 13.4    | 9           | 21.7       | 12.5    | 8           | 18.5              | 13.3    | 10           | 24.0        | 27.6         | 50           | 30             | 90      |
| 16-Nov-12              | 2                     | 6.6         |         |                    | 14.2              |         | 25               | 25.1             | 14.5    | 13          | 18.6              | 13.4    | 27          | 23.3       | 12.9    | 20          | 20.3              | 13.4    | 24           | 26.9        | 27.5         | 50           | 30             | 90      |
| 22-Nov-12              | 2                     | 20.5        |         |                    | 33.8              |         | 36               | 36.0             | 15.0    | 21          | 20.5              | 13.6    | 33          | 33.0       | 13.4    | 26          | 25.6              | 13.7    | 32           | 31.7        | 27.6         | 50           | 30             | 90      |
| 28-Nov-12              | 2                     | 0.0         |         |                    | 2.2               |         | 11               | 47               | 14.9    | 13          | 2.1               | 13.6    | 14          | 5 5        | 13.4    | 20          | 2.2               | 13.9    | 15           |             | 27.3         | 50<br>50     | 30             | 90      |
| 10 Dec 12              | -                     | 6.5         | 82      |                    | 2.3<br>13.1       | 13.7    | 5<br>15          | 4.7              | 14.7    | 3           | 3.1<br>7 /        | 13.0    | 6           | 9.0<br>8.0 | 13.3    | 3           | 3.Z               | 13.0    | 10           | 13.0        | 27.3         | 50           | 30             | 90      |
| 16-Dec-12              | -<br>-                | 5.5         | 0.2     |                    | 13.5              | 10.7    | 9                | 9.2              | 14.5    | 9           | 6.9               | 13.2    | 9           | 8.4        | 13.0    | 26          | 9.9               | 13.8    | 19           | 12.4        | 26.7         | 50           | 30             | 90      |
| 22-Dec-12              | 2                     | 17.9        |         |                    | 28.3              |         | 7                | 14.9             | 14.4    | 5           | 12.6              | 13.0    | 8           | 13.8       | 12.9    | 10          | 26.3              | 13.7    | 9            | 18.7        | 26.2         | 50           | 30             | 90      |
| 28-Dec-12              | 2                     |             |         |                    |                   |         | 20               |                  | 14.5    | 5           |                   | 12.9    | 7           |            | 12.8    | 9           |                   | 13.6    | 10           |             | 25.9         | 50           | 30             | 90      |
| 03-Jan-13              | 5                     | 0.0         |         |                    | 0.1               |         | 13               | 13.3             | 14.5    | 10          | 4.5               | 12.8    | 12          | 6.7        | 12.7    | 16          | 9.0               | 13.7    | 16           | 9.6         | 25.7         | 50           | 30             | 90      |
| 09-Jan-13              |                       | 7.8         | 8.1     |                    | 14.2              | 13.7    | 30               | 21.0             | 14.8    | 23          | 10.3              | 13.0    | 22          | 11.9       | 12.9    | 34          | 16.2              | 14.1    | 41           | 19.7        | 26.0         | 50           | 30             | 90      |
| 15-Jan-13              |                       | 0.8         |         |                    | 13.9              |         |                  | 19.9             | 14.8    | 0           | 7.8               | 12.9    | 7           | 11.3       | 12.9    | 12          | 12.3              | 14.1    | 1/           | 15.8        | 25.8         | 50           | 30             | 90      |
| 27-Jan-13              |                       | 23.0        |         |                    | 50.1              |         | 6                | 29.0             | 14.6    | 4           | 22.0              | 12.6    | 4           | 22.5       | 12.6    | 5           | 34.2              | 14.0    | 10           | 41.4        | 25.3         | 50           | 30             | 90      |
| 02-Feb-13              | 3                     | 2.1         |         |                    | 3.6               |         | 5                | 4.8              | 14.4    | 3           | 3.1               | 12.4    | 4           | 3.9        | 12.4    | 3           | 3.2               | 13.6    | 6            | 6.0         | 24.9         | 50           | 30             | 90      |
| 08-Feb-13              | 3                     | 4.7         | 7.6     |                    | 8.3               | 13.2    | 14               | 8.7              | 14.4    | 13          | 5.7               | 12.4    | 9           | 6.0        | 12.4    | 34          | 12.2              | 14.0    | 21           | 11.0        | 24.8         | 50           | 30             | 90      |
| 14-Feb-13              | 3                     | 4.4         |         |                    | 8.1               |         | 12               | 7.2              | 14.3    | 5           | 4.5               | 12.2    | 7           | 6.0        | 12.3    | 9           | 8.6               | 13.9    | 8            | 9.9         | 24.5         | 50           | 30             | 90      |
| 20-Feb-13              | 3                     | 8.4         |         |                    | 15.2              |         | 7                | 13.9             | 14.2    | 5           | 12.7              | 12.1    | 6           | 8.7        | 12.2    | 10          | 34.3              | 13.8    | 10           | 21.2        | 24.2         | 50           | 30             | 90      |
| 20-FeD-13<br>04-Mar-13 | 2                     |             |         |                    |                   |         | 5<br>5           |                  | 14.0    | 6           |                   | 11.9    | 6           |            | 12.2    | 4           |                   | 13.6    | 11           |             | 23.9         | 50<br>50     | 30             | 90      |
| 10-Mar-13              |                       | 1.5         |         |                    | 2.7               |         | 12               | 5.1              | 13.8    | 6           | 2.4               | 11.7    | 7           | 5.7        | 12.0    | 12          | 3.7               | 13.5    | 13           | 5.5         | 23.5         | 50           | 30             | 90      |
| 16-Mar-13              | 3                     | 5.4         | 7.3     |                    | 10.3              | 13.0    | 14               | 9.1              | 13.8    | 18          | 7.1               | 11.8    | 14          | 9.3        | 12.0    | 8           | 9.5               | 13.4    | 45           | 16.9        | 23.8         | 50           | 30             | 90      |
| 22-Mar-13              | 3                     | 4.5         |         |                    | 9.2               |         | 9                | 9.4              | 13.8    | 5           | 5.6               | 11.7    | 11          | 8.9        | 12.0    | 9           | 8.8               | 13.3    | 12           | 12.7        | 23.6         | 50           | 30             | 90      |
| 28-Mar-13              | 3                     | 16.9        |         |                    | 25.9              |         | 10               | 13.7             | 13.7    | 6           | 17.7              | 11.6    | 9           | 13.5       | 11.9    | 17          | 17.2              | 13.4    | 15           | 44.8        | 23.5         | 50           | 30             | 90      |
| Min<br>Max             |                       | 0.0<br>29 1 |         |                    | 0.1<br>41 4       | l<br>l  | 4.7<br>36.0      |                  |         | 2.4<br>48 8 |                   |         | 3.2<br>33 0 |            |         | 3.2<br>34 3 |                   |         | 4.8<br>114.0 |             |              |              |                |         |
| Capture                |                       |             |         |                    |                   |         | 97%              |                  |         | 98%         |                   |         | 98%         |            |         | 100%        |                   |         | 98%          |             |              |              |                |         |

#### Werris Creek Coal HVAS TEOM Dust Monitoring 2013-2014

| Site                   | 2.5TEOM92<br>Werris | Monthly | Annual  | 10TEOM92<br>Werris | EPL#30<br>Monthly | Annual  | HVP20<br>Tonsley | EPL#1<br>Monthly | Rolling<br>Annual | HVP98      | EPL#28<br>Monthly | Rolling<br>Annual | HVP1       | Monthly    | Rolling<br>Annual | HVP11      | EPL#29<br>Monthly | Rolling<br>Annual | HVT98       | Monthly | Rolling<br>Annual | PM10<br>24hr | PM10<br>Annual | TSP<br>Annual |
|------------------------|---------------------|---------|---------|--------------------|-------------------|---------|------------------|------------------|-------------------|------------|-------------------|-------------------|------------|------------|-------------------|------------|-------------------|-------------------|-------------|---------|-------------------|--------------|----------------|---------------|
| 03-Apr-13              | Creek               | 1.8     | Average | Creek              | 4.0               | Average | 18               | 8.8              | 17.9              | 8          | 3.5               | 7.9               | 11         | 4.8        | 11.4              | 12         | 12.3              | 12.4              | 14          | 7.1     | 14.4              | 50           | 30             | 90            |
| 09-Apr-13              |                     | 6.2     |         |                    | 12.3              |         | 16<br>16         | <b>14.6</b>      | 16.8<br>16.5      | 3.5<br>13  | 7.2<br>6.1        | 5.7<br>8.2        | 4.8        | <b>8.7</b> | 8.1<br>9.9        | 12.3       | <b>17.8</b>       | 12.4<br>18.4      | 7           | 12.5    | 10.8              | 50           | 30<br>20       | 90            |
| 21-Apr-13              |                     | 12.7    |         |                    | 25.7              |         | 9                | 17.9             | 14.6              | 4          | 13.1              | 7.2               | 5          | 13.5       | 8.7               | 16         | 30.5              | 17.8              | 8           | 20.0    | 12.5              | 50           | 30<br>30       | 90<br>90      |
| 27-Apr-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 09-May-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90<br>90      |
| 15-May-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 27-May-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 02-Jun-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 14-Jun-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30<br>30       | 90<br>90      |
| 20-Jun-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 02-Jul-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 08-Jul-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 20-Jul-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 26-Jul-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 07-Aug-13<br>07-Aug-13 |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 13-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 25-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90<br>90      |
| 31-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 12-Sep-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 18-Sep-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 30-Sep-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 06-Oct-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 12-Oct-13<br>18-Oct-13 |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 24-Oct-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7<br>8.7        |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 05-Nov-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 11-Nov-13              |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2               |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30             | 90            |
| 23-Nov-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 29-Nov-13<br>05-Dec-13 |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2<br>7.2        |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 11-Dec-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 17-Dec-13<br>23-Dec-13 |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2<br>7.2        |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 29-Dec-13              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 04-Jan-14<br>10-Jan-14 |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2<br>7.2        |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 16-Jan-14              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 22-Jan-14<br>28-Jan-14 |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2               |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30             | 90            |
| 03-Feb-14              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 09-Feb-14<br>15-Feb-14 |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2<br>7.2        |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 21-Feb-14              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 27-⊢eb-14<br>05-Mar-14 |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2<br>7.2        |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 11-Mar-14              |                     |         |         |                    |                   |         |                  |                  | 14.6              |            |                   | 7.2               |            |            | 8.7               |            |                   | 17.8              |             |         | 12.5              | 50           | 30             | 90            |
| 17-Mar-14<br>23-Mar-14 |                     |         |         |                    |                   |         |                  |                  | 14.6<br>14.6      |            |                   | 7.2               |            |            | 8.7<br>8.7        |            |                   | 17.8<br>17.8      |             |         | 12.5<br>12.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 29-Mar-14              |                     |         |         |                    |                   |         |                  |                  | 14.6              | L          |                   | 7.2               |            |            | 8.7               | 10.0       |                   | 17.8              | L           |         | 12.5              | 50           | 30             | 90            |
| Median                 |                     |         |         |                    |                   |         | 8.8<br>15.9      |                  |                   | 3.5<br>6.1 |                   |                   | 4.8        |            |                   | 12.3       |                   |                   | 7.1<br>11.4 |         |                   |              |                |               |
| wax<br>Capture         |                     |         |         |                    |                   |         | 17.9<br>7%       |                  |                   | 13.1<br>7% |                   |                   | 13.5<br>7% |            |                   | 30.5<br>7% |                   |                   | 20.0<br>7%  |         |                   |              |                |               |

<u>Appendix 2 – Dust Monitoring Results – Deposited Dust</u>

|        |              |                   |                  |               |           |              | Depos     | ited Dι        | ıst - Wer         | ris Cre         | ek Coal          | Mine 20          | 12-201          | 3                |               |        |           |         |         |                     |
|--------|--------------|-------------------|------------------|---------------|-----------|--------------|-----------|----------------|-------------------|-----------------|------------------|------------------|-----------------|------------------|---------------|--------|-----------|---------|---------|---------------------|
|        | M<br>(a/m    | IONTH<br>2/month) |                  | April<br>2012 | May 2012  | June<br>2012 | July 2012 | August<br>2012 | September<br>2012 | October<br>2012 | November<br>2012 | December<br>2012 | January<br>2013 | February<br>2013 | March<br>2013 | ANNUAL | AVERAGE - | MINIMUM | MAXIMUM | AQGHGMP<br>Criteria |
|        | (9           |                   | Total<br>Matter  | 2.5           | 1.2       | 1.0          | 1.5       | 0.4            | 1.3               | 2.3             | 1.7              | 1.4              | 3.3             | 1.9              | 1.1           |        |           |         |         |                     |
| -      | DG2          | Cintra            | Ash              | 1.4           | 0.8       | 0.8          | 1.0       | 0.3            | 0.7               | 1.2             | 1.0              | 0.7              | 1.6             | 1.2              | 0.7           | 1.6    | 1.5       | 0.4     | 3.3     | 4.0                 |
|        |              |                   | Total            | 1.1           | 1.0       | 0.5          | 0.7       | 2.5            | 1.0               | 1.2             | 1.2              | 1.6              | 3.2             | 0.6              | 0.3           |        |           |         |         |                     |
| -      | DG5          | Railway View      | Ash              | 0.6           | 0.7       | 0.5          | 0.5       | 1.5            | 0.7               | 0.8             | 1.0              | 1.4              | 2.7             | 0.6              | 0.2           | 1.2    | 1.2       | 0.3     | 3.2     | 4.0                 |
|        |              |                   | Total            | 0.6           | 0.4       | 0.3          | 0.5       | 0.3            | 1.2               | 1.0             | 1.0              | 1.2              | 3.3             | 0.9              | 0.4           |        |           |         |         |                     |
| EPL #1 | DG20         | Tonsley Park      | Ash              | 0.3           | 0.4       | 0.3          | 0.4       | 0.2            | 0.5               | 0.5             | 0.6              | 0.8              | 2.5             | 0.5              | 0.2           | 0.9    | 0.9       | 0.3     | 3.3     | 4.0                 |
|        |              |                   | Content<br>Total | 1.0           | 2.1       | 3.5          | 1.8       | 5.0            | 0.6               | 0.7             | 0.7              | 1.0              | 2.0             | 1.5              | 1.2           |        |           |         |         |                     |
| -      | DG15         | Plain View        | Matter<br>Ash    | 0.6           | 1.0       | 0.0          | 0.6       | 0.0            | 0.0               | 0.7             | 0.4              | 0.8              | 1.5             | 1.0              | 0.7           | 1.8    | 1.8       | 0.6     | 5.0     | 4.0                 |
|        |              |                   | Content<br>Total | 0.0           | 1.2       | 2.5          | 0.0       | 2.0            | 0.5               | 0.5             | 0.4              | 0.8              | 1.5             | 1.0              | 0.7           |        |           |         |         |                     |
| -      | DG9          | Marengo           | Matter<br>Ash    | 0.7           | 1.3       | 0.8          | 0.2       | 0.6            | 0.7               | 0.7             | 0.5              | 0.6              | 1.0             | 1.0              | 0.2           | 0.7    | 0.8       | 0.2     | 1.6     | 4.0                 |
|        |              |                   | Content<br>Total | 0.3           | 0.7       | 0.5          | 0.2       | 0.3            | 0.5               | 0.3             | 0.3              | 0.5              | 1.4             | 0.6              | 0.2           |        |           |         |         |                     |
| -      | DG22         | Mountain<br>View  | Matter           | 3.5           | 0.5       | 0.5          | 1.2       | 0.5            | 0.6               | 0.3             | 0.1              | 3.2              | 3.0             | 1.2              | 0.4           | 1.3    | 1.3       | 0.1     | 3.5     | 4.0                 |
|        |              | view              | Content          | 2.6           | 0.5       | 0.4          | 1.0       | 0.3            | 0.5               | 0.1             | 0.1              | 1.6              | 1.5             | 0.8              | 0.3           |        |           |         |         |                     |
| EPL#29 | DG11         | Glenara           | Matter           | 1.5           | 2.1       | 2.6          | 425.0     | 2.4            | 4.5               | 1.2             | 0.7              | 3.7              | 1.2             | 0.3              | 0.5           | 37.1   | 1.6       | 0.3     | 425.0   | 4.0                 |
|        |              |                   | Content          | 0.8           | 0.9       | 0.9          | 391.0     | 1.2            | 4.0               | 0.8             | 0.5              | 1.6              | 0.9             | 0.3              | 0.4           |        |           |         |         |                     |
| -      | DG24         | Hazeldene         | Matter           | NS            | NS        | NS           | NS        | 0.5            | 0.5               | 0.7             | 0.6              | 3.6              | 1.8             | 0.8              | 0.4           | 1.1    | 0.8       | 0.4     | 3.6     | 4.0                 |
|        | -            |                   | Ash<br>Content   | NS            | NS        | NS           | NS        | 0.3            | 0.5               | 0.5             | 0.5              | 1.6              | 1.4             | 0.6              | 0.2           |        |           |         |         |                     |
|        | DG17         | DG17 Woodlands    | Total<br>Matter  | NS            | NS        | NS           | NS        | 0.3            | 0.5               | 2.8             | 1.8              | 2.5              | 2.7             | 0.6              | 0.5           | 15     | 15        | 0.3     | 28      | 4.0                 |
|        | Don          | Woodlands         | Ash<br>Content   | NS            | NS        | NS           | NS        | 0.3            | 0.5               | 1.5             | 1.0              | 0.9              | 1.8             | 0.6              | 0.2           |        | 1.0       | 0.0     | 2.0     | 4.0                 |
|        | DC06         | Talayara          | Total<br>Matter  | NS            | NS        | NS           | NS        | 0.2            | 0.6               | 0.8             | 0.6              | 0.9              | 1.4             | 0.7              | 0.4           | 0.7    | 0.7       | 0.2     | 1.4     | 4.0                 |
| -      | DG96         | Talavera          | Ash<br>Content   | NS            | NS        | NS           | NS        | 0.2            | 0.4               | 0.6             | 0.4              | 0.5              | 0.3             | 0.6              | 0.2           | 0.7    | 0.7       | 0.2     | 1.4     | 4.0                 |
|        |              |                   | Total<br>Matter  | NS            | NS        | NS           | NS        | 0.3            | 0.4               | 1.1             | 0.7              | 1.0              | 1.9             | 0.3              | 0.4           |        |           |         |         |                     |
| EPL#28 | DG98         | Kyooma            | Ash<br>Content   | NS            | NS        | NS           | NS        | 0.1            | 0.3               | 0.5             | 0.3              | 0.6              | 1.2             | 0.3              | 0.1           | 0.8    | 0.7       | 0.3     | 1.9     | 4.0                 |
|        |              |                   | Total<br>Matter  | NS            | NS        | NS           | NS        | 0.3            | 0.5               | 0.6             | 0.8              | 1.0              | 1.5             | 0.6              | 0.4           |        |           |         |         |                     |
| -      | DG14         | Greenslopes       | Ash              | NS            | NS        | NS           | NS        | 0.1            | 0.4               | 0.5             | 0.4              | 0.5              | 1.2             | 0.6              | 0.1           | 0.7    | 0.8       | 0.3     | 1.5     | 4.0                 |
|        |              | Warria Crook      | Total            | NS            | NS        | NS           | NS        | 0.7            | 0.5               | 0.3             | 0.7              | 0.5              | 0.9             | 0.6              | 0.3           |        |           |         |         |                     |
| -      | DG62         | South             | Ash              | NS            | NS        | NS           | NS        | 0.3            | 0.3               | 0.3             | 0.3              | 0.3              | 0.7             | 0.6              | 0.1           | 0.6    | 0.6       | 0.3     | 0.9     | 4.0                 |
|        |              | Warria Oraala     | Total            | NS            | NS        | NS           | NS        | 0.6            | 0.5               | 0.7             | 2.5              | 1.1              | 1.2             | 0.5              | 0.2           |        |           |         |         |                     |
| EPL#30 | DG92         | Centre            | Ash              | NS            | NS        | NS           | NS        | 0.2            | 0.3               | 0.4             | 0.5              | 0.5              | 0.9             | 0.5              | 0.1           | 0.9    | 0.6       | 0.2     | 2.5     | 4.0                 |
|        |              |                   | Content<br>Total | NS            | NS        | NS           | NS        | 0.6            | 0.6               | 0.8             | 11               | 1.5              | 27              | 1 1              | 0.3           |        |           |         |         |                     |
| -      | DG101        | Westfall          | Matter<br>Ash    | NS            | NS        | NS           | NS        | 0.2            | 0.4               | 0.4             | 0.6              | 0.8              | 22              | 0.9              | 0.2           | 1.1    | 1.2       | 0.3     | 2.7     | 4.0                 |
|        |              |                   | Content<br>Total | NG            | NS        | NG           | NS        | 1.0            | 0.4               | 1.1             | 1.1              | 1.1              | 0.6             | 0.0              | 0.5           |        |           |         |         |                     |
| -      | DG103        | West Street       | Matter<br>Ash    | NO            | NG        | NC           | NG        | 0.5            | 0.5               | 0.7             | 0.6              | 0.7              | 0.0             | 3.2              | 0.3           | 1.1    | 0.9       | 0.5     | 3.2     | 4.0                 |
|        |              |                   | Content<br>Total | NS            | INS<br>NO | NS<br>NO     | NS<br>NO  | 0.5            | 0.5               | 0.7             | 0.6              | 0.7              | 0.6             | 1.5              | 0.2           |        |           |         |         |                     |
| -      | DG1          | Escott            | Matter<br>Ash    | NS            | NS        | NS           | NS        | 0.5            | 0.3               | 0.5             | 0.6              | 0.8              | 1.3             | 1.6              | 0.5           | 0.8    | 0.8       | 0.3     | 1.6     | 4.0                 |
|        |              |                   | Content          | NS            | NS        | NS           | NS        | 0.2            | 0.3               | 0.3             | 0.3              | 0.4              | 1.0             | 1.4              | 0.4           |        |           |         |         |                     |
|        | DG3          | Eurunderee        | Matter           | NS            | NS        | NS           | NS        | 0.6            | 0.4               | 0.4             | 0.8              | 1.2              | 1.6             | 0.2              | 0.6           | 0.7    | 0.7       | 0.2     | 1.6     | 4.0                 |
| L      |              |                   | Content          | NS            | NS        | NS           | NS        | 0.2            | 0.3               | 0.3             | 0.4              | 0.7              | 1.4             | 0.2              | 0.3           |        |           |         |         |                     |
|        | DG34 8 Kurra | 8 Kurrara         | l otal<br>Matter | NS            | NS        | NS           | NS        | 0.5            | 1.2               | 1.9             | 1.1              | 1.2              | 1.4             | 11.9             | 0.4           | 2.5    | 1.0       | 0.4     | 11.9    | 4.0                 |
|        | - DG34 Stre  | Street            | Ash<br>Content   | NS            | NS        | NS           | NS        | 0.3            | 0.5               | 0.7             | 0.6              | 0.6              | 1.0             | 8.7              | 0.2           |        |           |         |         | -                   |
|        | DG106        | Villamagna        | Total<br>Matter  | NS            | NS        | NS           | NS        | NS             | 0.4               | 0.6             | 13.1             | 1.1              | 2.2             | 0.7              | 0.4           | 26     | 0.9       | 0.4     | 13.1    | 4.0                 |
|        | 20100        | Thanayid          | Ash<br>Content   | NS            | NS        | NS           | NS        | NS             | 0.3               | 0.3             | 11.4             | 0.7              | 1.9             | 0.7              | 0.2           | 2.0    | 0.5       | 0.4     | 13.1    | 4.0                 |

Note: All results are in the form of Insoluble Matter (g/m2/month); NS - Not sampled RED - indicates sample is contaminated from a Non-Werris Creek Coal dust source and is not counted in the average YELLOW - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e bird droppings and insects) and is excluded from the average

|         |          |                     |                  |            |          |      | Depos     | ited Du | ust - Wer | ris Cre | ek Coal  | Mine 20  | 13-2014 | 4        |       |         |           |         |         |          |
|---------|----------|---------------------|------------------|------------|----------|------|-----------|---------|-----------|---------|----------|----------|---------|----------|-------|---------|-----------|---------|---------|----------|
|         | M        | IONTH               |                  | April 2012 | May 2012 | June | July 2012 | August  | September | October | November | December | January | February | March | ANNUAL  | AVERAGE - | MINIMUM | MAXIMUM | AQGHGMP  |
|         | (g/m     | 2/month)            | Total<br>Matter  | 4.1        |          | 2012 |           | 2012    | 2012      | 2012    | 2012     | 2012     | 2013    | 2013     | 2013  | AVERAGE | EXCLUDED  |         |         | Criteria |
| -       | DG2      | Cintra              | Ash<br>Content   | 3.0        |          |      |           |         |           |         |          |          |         |          |       | 4.1     | 4.1       | 4.1     | 4.1     | 4.0      |
|         | Dat      | D.: 1               | Total<br>Matter  | 0.7        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         | 4.0      |
| -       | DG5      | Rallway view        | Ash<br>Content   | 0.5        |          |      |           |         |           |         |          |          |         |          |       | 0.7     | 0.7       | 0.7     | 0.7     | 4.0      |
| EDI #1  | DC 20    | Tonslov Park        | Total<br>Matter  | 1.2        |          |      |           |         |           |         |          |          |         |          |       | 1.2     | 1.2       | 12      | 1.2     | 4.0      |
|         | 0020     | Tonsiey Park        | Ash<br>Content   | 0.7        |          |      |           |         |           |         |          |          |         |          |       | 1.2     | 1.2       | 1.2     | 1.2     | 4.0      |
| -       | DG15     | Plain View          | Total<br>Matter  | 2.6        |          |      |           |         |           |         |          |          |         |          |       | 2.6     | 2.6       | 2.6     | 2.6     | 4.0      |
|         | <b> </b> |                     | Ash<br>Content   | 1.3        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG9      | Marengo             | Matter           | 1.4        |          |      |           |         |           |         |          |          |         |          |       | 1.4     | #DIV/0!   | 1.4     | 1.4     | 4.0      |
|         | <b> </b> |                     | Content          | 0.6        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG22     | Mountain<br>View    | Matter           | 0.7        |          |      |           |         |           |         |          |          |         |          |       | 0.7     | 0.7       | 0.7     | 0.7     | 4.0      |
|         | <u> </u> | view                | Content          | 0.5        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| EPL#29  | DG11     | Glenara             | Matter           | 0.2        |          |      |           |         |           |         |          |          |         |          |       | 0.2     | 0.2       | 0.2     | 0.2     | 4.0      |
|         |          |                     | Content<br>Total | 0.1        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG24     | Hazeldene           | Matter<br>Ash    | 0.8        |          |      |           |         |           |         |          |          |         |          |       | 0.8     | 0.8       | 0.8     | 0.8     | 4.0      |
|         |          | <b> </b>            | Content<br>Total | 0.4        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG17     | Woodlands           | Matter<br>Ash    | 0.5        |          |      |           |         |           |         |          |          |         |          |       | 0.8     | 0.8       | 0.8     | 0.8     | 4.0      |
|         |          | Ash<br>Conte        | Content<br>Total | 0.7        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG96     | Talavera            | Matter<br>Ash    | 0.4        |          |      |           |         |           |         |          |          |         |          |       | 0.7     | 0.7       | 0.7     | 0.7     | 4.0      |
|         |          |                     | Total            | 0.2        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| EPL#28  | DG98     | Kyooma              | Ash              | 0.2        |          |      |           |         |           |         |          |          |         |          |       | 0.2     | 0.2       | 0.2     | 0.2     | 4.0      |
|         |          |                     | Total            | 0.4        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG14     | Greenslopes         | Ash<br>Content   | 0.3        |          |      |           |         |           |         |          |          |         |          |       | 0.4     | 0.4       | 0.4     | 0.4     | 4.0      |
|         | DOCO     | Werris Creek        | Total<br>Matter  | 0.3        |          |      |           |         |           |         |          |          |         |          |       |         |           | 0.2     |         | 4.0      |
| -       | DG62     | South               | Ash<br>Content   | 0.2        |          |      |           |         |           |         |          |          |         |          |       | 0.3     | 0.3       | 0.3     | 0.3     | 4.0      |
| EDI #30 | DG92     | Werris Creek        | Total<br>Matter  | 0.5        |          |      |           |         |           |         |          |          |         |          |       | 0.5     | 0.5       | 0.5     | 0.5     | 4.0      |
| LI L#30 | 0032     | Centre              | Ash<br>Content   | 0.3        |          |      |           |         |           |         |          |          |         |          |       | 0.5     | 0.5       | 0.5     | 0.5     | 4.0      |
| -       | DG101    | Westfall            | Total<br>Matter  | 1.2        |          |      |           |         |           |         |          |          |         |          |       | 1.2     | 1.2       | 1.2     | 1.2     | 4.0      |
|         |          |                     | Ash<br>Content   | 0.8        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG103    | West Street         | Total<br>Matter  | 0.8        |          |      |           |         |           |         |          |          |         |          |       | 0.8     | 0.8       | 0.8     | 0.8     | 4.0      |
|         | <u> </u> |                     | Content          | 0.6        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG1      | Escott              | Matter           | 2.4        |          |      |           |         |           |         |          |          |         |          |       | 2.4     | #DIV/0!   | 2.4     | 2.4     | 4.0      |
|         | ┝───     |                     | Content          | 1.0        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG3      | Eurunderee          | Matter           | 1.1        |          |      |           |         |           |         |          |          |         |          |       | 1.1     | 1.1       | 1.1     | 1.1     | 4.0      |
|         | ┝───     | <b> </b>            | Content<br>Total | 0.8        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | DG34     | 8 Kurrara<br>Street | Matter<br>Ash    | 13.7       |          |      |           |         |           |         |          |          |         |          |       | 13.7    | #DIV/0!   | 13.7    | 13.7    | 4.0      |
|         | ┝───     |                     | Content<br>Total | 9.8        |          |      |           |         |           |         |          |          |         |          |       |         |           |         |         |          |
| -       | - DG106  | Villamagna          | Matter<br>Ash    | 0.8        |          |      |           |         |           |         |          |          |         |          |       | 0.8     | 0.8       | 0.8     | 0.8     | 4.0      |
| 1       | 1        | 1                   | Content          | 0.5        | 1        |      | 1         |         | I         |         |          | 1        | 1       |          |       |         |           |         |         |          |

Note: All results are in the form of Insoluble Matter (g/m2/month); NS - Not sampled
BROWN - indicates sample is contaminated from a Non-Werris Creek Coal dust source and is not counted in the average
YELLOW - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e bird droppings and insects) and is excluded from the average RED - result above 4g/m2/month

# Appendix 3 – Train Dust Deposition Monitoring

|                   |              |        |                             |        |              | Dep                        | oosi                        | ted    | Dus          | st - C | Quir                        | indi   | Tra          | ins    | 2012                        | 2-20   | 13           |        |                             |        |              |        |                             |        |        |
|-------------------|--------------|--------|-----------------------------|--------|--------------|----------------------------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------|
|                   |              | DD     | W30                         |        |              | DD                         | N20                         |        |              | DD     | W13                         |        |              | DD     | E13                         |        |              | DD     | E20                         |        |              | DD     | E30                         |        | line   |
|                   | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal                     | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Guidel |
| April 2012        | 0.8          | 25%    | 50%                         | 25%    | 0.3          | 25%                        | 50%                         | 25%    | 0.3          | 30%    | 40%                         | 30%    | 0.7          | 25%    | 50%                         | 25%    | 1.0          | 10%    | 60%                         | 30%    | 0.5          | 25%    | 50%                         | 25%    | 4.0    |
| May 2012          | 1.1          | 30%    | 40%                         | 30%    | 0.7          | 35%                        | 25%                         | 40%    | 0.6          | 20%    | 50%                         | 30%    | 0.6          | 40%    | 40%                         | 20%    | 0.4          | 10%    | 60%                         | 30%    | 0.7          | 25%    | 50%                         | 25%    | 4.0    |
| June 2012         | 1.0          | 35%    | 45%                         | 20%    | 0.8          | 45%                        | 35%                         | 20%    | 0.9          | 35%    | 55%                         | 10%    | 0.5          | 45%    | 40%                         | 15%    | 1.9          | 20%    | 60%                         | 20%    | 1.3          | 15%    | 65%                         | 20%    | 4.0    |
| July 2012         | 1.2          | 40%    | 30%                         | 30%    | 0.8          | 40%                        | 30%                         | 30%    | 1.2          | 40%    | 30%                         | 30%    | 0.7          | 40%    | 30%                         | 30%    | 2.4          | 10%    | 60%                         | 30%    | 1.5          | 25%    | 50%                         | 25%    | 4.0    |
| August 2012       | 0.6          | 30%    | 30%                         | 40%    | 0.6          | 0.840%30%30%10.630%30%30%0 |                             |        |              | 30%    | 50%                         | 20%    | 0.5          | 30%    | 50%                         | 20%    | 0.7          | 20%    | 50%                         | 30%    | 2.7          | 15%    | 20%                         | 60%    | 4.0    |
| September 2012    | 1.7          | 20%    | 20%                         | 60%    | 1.2          | 20%                        | 50%                         | 30%    | 1.3          | 15%    | 55%                         | 30%    | 0.9          | 20%    | 50%                         | 30%    | 0.7          | 20%    | 60%                         | 20%    | 0.6          | 10%    | 60%                         | 30%    | 4.0    |
| October 2012      | 1.5          | 15%    | 50%                         | 35%    | 1.4          | 15%                        | 50%                         | 35%    | 0.9          | 20%    | 40%                         | 40%    | 1.0          | 25%    | 50%                         | 25%    | 0.6          | 20%    | 40%                         | 40%    | 1.6          | 10%    | 50%                         | 40%    | 4.0    |
| November 2012     | 1.2          | 10%    | 60%                         | 10%    | 1.5          | 15%                        | 50%                         | 10%    | 0.8          | 15%    | 40%                         | 25%    | 0.9          | 15%    | 15%                         | 40%    | 2.4          | 5%     | 50%                         | 25%    | 1.5          | 10%    | 35%                         | 25%    | 4.0    |
| December 2012     | 1.0          | 15%    | 60%                         | 25%    | 1.4          | 5%                         | 65%                         | 30%    | 1.7          | 60%    | 25%                         | 15%    | 2.4          | 15%    | 65%                         | 20%    | 1.4          | 20%    | 60%                         | 20%    | 3.6          | 5%     | 85%                         | 10%    | 4.0    |
| January 2013      | 1.8          | 10%    | 50%                         | 30%    | 1.3          | 10%                        | 70%                         | 20%    | 1.5          | 10%    | 60%                         | 30%    | 1.3          | 15%    | 65%                         | 20%    | 1.0          | 10%    | 60%                         | 30%    | 2.5          | 5%     | 70%                         | 10%    | 4.0    |
| February 2013     | 0.7          | 10%    | 35%                         | 55%    | 0.6          | 15%                        | 40%                         | 45%    | 1.0          | 20%    | 40%                         | 40%    | 0.5          | 15%    | 45%                         | 40%    | 0.4          | 10%    | 45%                         | 30%    | 1.0          | 10%    | 50%                         | 20%    | 4.0    |
| March 2013        | 0.3          | 10%    | 50%                         | 40%    | 0.2          | 15%                        | 50%                         | 25%    | 0.7          | 15%    | 60%                         | 25%    | -            | -      | -                           | -      | 0.4          | 5%     | 65%                         | 30%    | 0.2          | 5%     | 65%                         | 15%    | 4.0    |
| ANNUAL AVERAGE    |              | 1      | .1                          |        |              | 0                          | .9                          |        |              | 1      | .0                          |        |              | 0      | .9                          |        |              | 1      | .1                          |        |              | 1      | .5                          |        | 4.0    |
| Average Coal %    | 20.8%        |        |                             |        |              | 22.                        | 5%                          |        |              | 25     | .8%                         |        |              | 25     | .9%                         |        |              | 13.    | 3%                          |        |              | 13.    | .3%                         |        | -      |
| Average Coal g/m2 |              | 0.     | 22                          |        |              | 0.                         | 20                          |        |              | 0.     | 25                          |        |              | 0.     | 24                          |        |              | 0.     | 15                          |        |              | 0.     | 20                          |        | -      |
| MINIMUM           |              | 0      | .3                          |        |              | 0                          | .2                          |        |              | 0      | .3                          |        |              | 0      | .5                          |        |              | 0      | .4                          |        |              | 0      | .2                          |        | -      |
| MAXIMUM           |              | 1      | .8                          |        |              | 1                          | .5                          |        |              | 1      | .7                          |        |              | 2      | .4                          |        |              | 2      | .4                          |        |              | 3      | .6                          |        | 4.0    |

Note: All results are in the form of Insoluble Matter (g/m2/month)

|                   |              |        |                             |        |              | De     | posi                        | ted    | Dus          | st - ( | Quir                        | indi   | Tra          | ins    | 201:                        | 3-20   | 14           |        |                             |        |              |        |                             |        |        |
|-------------------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------|
|                   |              | DD     | W30                         |        |              | DD     | W20                         |        |              | DD     | W13                         |        |              | DD     | E13                         |        |              | DD     | E20                         |        |              | DD     | E30                         |        | ine    |
|                   | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Guidel |
| April 2013        | 0.8          | 15%    | 45%                         | 40%    | 0.5          | 15%    | 50%                         | 35%    | -            | -      | -                           | -      | 1.0          | 15%    | 45%                         | 15%    | 0.9          | 15%    | 60%                         | 25%    | 0.7          | 5%     | 55%                         | 40%    | 4.0    |
| May 2013          |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| June 2013         |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| July 2013         |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| August 2013       |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             | 4.0    |        |
| September 2013    |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        | 4.0                         |        |        |
| October 2013      |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| November 2013     |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| December 2013     |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| January 2014      |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| February 2014     |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| March 2014        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| ANNUAL AVERAGE    |              | 0      | .8                          |        |              | 0.5    |                             |        |              | #D     | V/0!                        |        |              | 1      | .0                          |        |              | 0      | .9                          |        |              | 0      | .7                          |        | 4.0    |
| Average Coal %    |              | 15     | .0%                         |        |              | 15.0%  |                             |        |              | #D     | V/0!                        |        |              | 15     | .0%                         |        |              | 15     | .0%                         |        |              | 5.     | 0%                          |        | -      |
| Average Coal g/m2 |              | 0.     | 12                          |        |              | 0.08   |                             |        |              | #D     | V/0!                        |        |              | 0.     | .15                         |        |              | 0.     | .14                         |        |              | 0.     | .04                         |        | -      |
| MINIMUM           |              | 0      | .8                          |        |              | 0      | 0.08                        |        |              |        | .0                          |        |              | 1      | .0                          |        |              | 0      | .9                          |        |              | 0      | .7                          |        | -      |
| MAXIMUM           |              | 0      | .8                          |        |              | 0      | .5                          |        |              | 0      | .0                          |        |              | 1      | .0                          |        |              | 0      | .9                          |        |              | 0      | .7                          |        | 4.0    |

Note: All results are in the form of Insoluble Matter (g/m2/month)

# Appendix 4 – Noise Monitoring Results



13 February 2013

Ref: 04035/4670

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

#### RE: FEBRUARY 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Wednesday 6<sup>th</sup> February, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

#### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendix 1**.

|                                       |                                                    |      | Table 1                        |                                        |  |  |  |  |
|---------------------------------------|----------------------------------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|
| WCC Attended Noise Monitoring Program |                                                    |      |                                |                                        |  |  |  |  |
| Monitoring Point                      | Duration ID Receiver Relevant Monitoring Requireme |      |                                |                                        |  |  |  |  |
| A                                     | 15 minutes <sup>1</sup>                            | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |
| B1                                    | $60 \text{ minutes}^2$                             | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |
|                                       | 00 minutes                                         | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |
| B2                                    | $60 \text{ minutes}^2$                             | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |
| DZ                                    | 00 minutes                                         | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |
| С                                     | 15 minutes <sup>1</sup>                            | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |
|                                       |                                                    | R11* | Glenara                        | r IIvate Agreement                     |  |  |  |  |
| D                                     | 60 minutes <sup>2</sup>                            | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |
| E                                     | 60 minutes <sup>2</sup>                            | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |
| F                                     | 60 minutes <sup>2</sup>                            | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |
| G                                     | 15 minutes <sup>1</sup>                            | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |
| Н                                     | 15 minutes <sup>1</sup>                            | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |
| I                                     | 60 minutes <sup>2</sup>                            | R57  | Kurrara Street <sup>@</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |
| J                                     | 15 minutes <sup>1</sup>                            |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |
| ĸ                                     | 15 minutes <sup>1</sup>                            | R20* | Tonsley Park                   | Mine Owned                             |  |  |  |  |
|                                       |                                                    | R21* | Alco Park                      | Private Agreement                      |  |  |  |  |
| L                                     | 15 minutes <sup>1</sup>                            | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

#### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is





required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

#### **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather stations.

#### WCC Operations

WCC operations on 6<sup>th</sup> February 2013 had the 3600 and a 1900 excavator in Strip 12 east at RL310m; the PC4000 excavator in Strip 11 centre at RL290m and a 1900 excavator in Strip 14 centre at RL370m. Three overburden truck fleets were running to the RL410m western dump on day and night shift; while one overburden fleet was hauling gravel to the new Mine Infrastructure Area pad. Scraper operations were moving overburden from Strip 15 to the LOM Visual Bund at RL410m on the eastern side of the mine on day and night shift. The crushing plant operated to 3:30am with one train loaded commencing at 10:00am and finished at 12:13pm.

#### Noise Compliance Assessment

The results shown in **Tables 2** and **3** indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period.



| Table 2                                              |         |        |           |                     |            |                                                                            |  |  |
|------------------------------------------------------|---------|--------|-----------|---------------------|------------|----------------------------------------------------------------------------|--|--|
| WCC Noise Monitoring Results – 6 February 2013 (Day) |         |        |           |                     |            |                                                                            |  |  |
|                                                      |         | dB(A), | Criterion | Inversion           | Wind       |                                                                            |  |  |
| Location                                             | Time    | Leq    | dB(A) Leq | <sup>o</sup> C/100m | speed/ dir | Identified Noise Sources                                                   |  |  |
| A R5 Rosehill                                        | 2:35 pm | 38     | 35        | n/a                 | 2.1/209    | Traffic (36), birds & insects (33), WCC inaudible                          |  |  |
| B1 R7 83 Wadwells Lane/R8 Almawillee                 | 1:34 pm | 48     | 37        | n/a                 | 3.1/197    | Birds & insects (47), traffic (41), WCC inaudible                          |  |  |
| <b>B2</b> R9Gedhurst/ R22<br>Mountain View           | 1:30 pm | 43     | 37/36*    | n/a                 | 3.1/197    | Birds & insects (41), traffic (35), WCC inaudible                          |  |  |
| C R10 Meadholme/<br>R11 Glenara                      | 2:55 pm | 45     | 39        | n/a                 | 2.0/161    | Birds & insects (45), traffic (22), WCC inaudible                          |  |  |
| D R24 Hazeldene                                      | 3:14 pm | 37     | 37        | n/a                 | 3.8/200    | Traffic (36), birds & insects (30), WCC inaudible                          |  |  |
| E R12 Railway Cottage                                | 5:00 pm | 44     | 38        | n/a                 | 5.5/197    | Traffic (44), birds & insects (35), WCC inaudible                          |  |  |
| F R96 Talavera                                       | 2:40 pm | 36     | 38        | n/a                 | 2.8/193    | Birds & insects (34), traffic (32), WCC inaudible                          |  |  |
| <b>G</b> R97                                         | 4:10 pm | 39     | 35        | n/a                 | 4.7/196    | Birds & insects (37), wind (32), WCC inaudible                             |  |  |
| H R98 Kyooma                                         | 3:45 pm | 37     | 36        | n/a                 | 3.9/201    | Birds & insects (36), wind in trees (31), WCC barely audible               |  |  |
| I R57 Kurrara St                                     | 4:52 pm | 43     | 35        | n/a                 | 5.5/197    | Train (40), traffic (39), birds & insects (32), WCC inaudible              |  |  |
| J R57 Coronation Ave                                 | 4:34 pm | 45     | 35        | n/a                 | 4.8/197    | Construction noise (41), traffic (40), birds & insects (38), WCC inaudible |  |  |
| K R21 Alco Park                                      | 4:37 pm | 46     |           | n/a                 | 4.9/197    | Birds & insects (43), traffic (42), trains (34), WCC inaudible             |  |  |
| L R103                                               | 4:20 pm | 36     | 35        | n/a                 | 4.7/196    | Traffic (35), birds (30), WCC inaudible                                    |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

| Table 3                                                        |          |                     |        |           |                     |            |                                                      |  |  |
|----------------------------------------------------------------|----------|---------------------|--------|-----------|---------------------|------------|------------------------------------------------------|--|--|
| WCC Noise Monitoring Results – 6 February 2013 (Evening/Night) |          |                     |        |           |                     |            |                                                      |  |  |
|                                                                |          | dB(A),              | dB(A), | Criterion | Inversion           | Wind       |                                                      |  |  |
| Location                                                       | Time     | L1                  | Leq    | dB(A) Leq | <sup>o</sup> C/100m | speed/ dir | Identified Noise Sources                             |  |  |
|                                                                |          | (1min) <sup>1</sup> |        |           |                     |            |                                                      |  |  |
| A R5 Rosehill                                                  | 8:30 pm  | n/a                 | 40     | 35        | +1.7                | 4.1/167    | Frogs & insects (39), traffic (32), WCC inaudible    |  |  |
| B1 R7 83 Wadwells                                              | 10:47 pm | 42                  | 43     | 37        | +6.2                | 1.0/100    | Insects (42), WCC (34), traffic (30)                 |  |  |
| Lane/R8 Almawillee                                             |          |                     |        |           |                     |            |                                                      |  |  |
| B2 R9Gedhurst/ R22                                             | 7:25 pm  | n/a                 | 43     | 37/36*    | +1.1                | 4.3/185    | Birds & insects (42), traffic (34), WCC inaudible    |  |  |
| Mountain View                                                  |          |                     |        |           |                     |            |                                                      |  |  |
| C R10 Meadholme/                                               | 8:50 pm  | n/a                 | 37     | 39        | +1.8                | 3.2/159    | Frogs & insects (34), traffic (34), WCC inaudible    |  |  |
| R11 Glenara                                                    |          |                     |        |           |                     |            |                                                      |  |  |
| D R24 Hazeldene                                                | 9:09 am  | n/a                 | 43     | 37        | +2.6                | 2.7/151    | Frogs & insects (42), traffic (34), WCC inaudible    |  |  |
| E R12 Railway Cottage                                          | 11:00 pm | n/a                 | 44     | 38        | +6.5                | 1.4/77     | Traffic (44), insects (35), WCC barely audible       |  |  |
| F R96 Talavera                                                 | 7:30 pm  | n/a                 | 43     | 37        | +1.1                | 4.3/185    | Birds & insects (43), traffic (30), WCC inaudible    |  |  |
| <b>G</b> R97                                                   | 8:52 pm  | <25                 | 38     | 35        | +1.8                | 3.2/159    | Frogs & insects (38), WCC (20)                       |  |  |
| H R98 Kyooma                                                   | 8:33 pm  | 28                  | 34     | 36        | +1.7                | 4.1/167    | Frogs & insects (34), WCC (23)                       |  |  |
| I R57 Kurrara St                                               | 9:35 pm  | n/a                 | 39     | 35        | +3.6                | 1.9/134    | Frogs & insects (39), traffic (30), trains (22), WCC |  |  |
|                                                                |          |                     |        |           |                     |            | inaudible                                            |  |  |
| J R57 Coronation Ave                                           | 9:13 pm  | n/a                 | 36     | 35        | +3.1                | 3.0/152    | Traffic (34), insects (32), WCC inaudible            |  |  |
| K R21 Alco Park                                                | 10:38 pm | n/a                 | 44     |           | +5.8                | 0.4/153    | Insects (42), trains (38), traffic (37), WCC         |  |  |
|                                                                |          |                     |        |           |                     |            | inaudible                                            |  |  |
| L R103                                                         | 10:18 pm | n/a                 | 51     | 35        | +4.9                | 0.6/148    | Train (50), insects (44), traffic (32), WCC          |  |  |
|                                                                |          |                     |        |           |                     |            | inaudible                                            |  |  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.





The results shown in Table 3 indicate that, under the operational and atmospheric conditions at the time, noise emission from WCC did not exceed the relevant noise criterion oat any location or time period.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

#### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.





We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Ponte

Neil Pennington Acoustical Consultant

Review:

Van

Ross Hodge Acoustical Consultant



SPECTRUM COUSTICS

# Appendix I



Attended Noise Monitoring Locations





# Appendix II

Noise Limits

| Location                       |                               | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|--------------------------------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|                                |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7                             | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9                             | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12                            | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22                            | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24                            | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96 "Talavera" <sup>#</sup>    |                               | 38                         | 37                         | 45                    | 35                          | 40                         |
| All other privately-owned land |                               | 35                         | 35                         | 45                    | 35                          | 40                         |

### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |  |  |
|-----|----------------|-----------------------------------|-----------------------------------------|--|--|
| R8  | "Almawillee"   | 40                                | 45                                      |  |  |
| R10 | "Meadholme"    | 40                                | 45                                      |  |  |
| R11 | "Glenara"      | 40                                | 45                                      |  |  |
| R20 | "Tonsley Park" | 40                                | 45                                      |  |  |
| R21 | "Alco Park"    | 40                                | 45                                      |  |  |
| R98 | "Kyooma"       | 40                                | 45                                      |  |  |

#### Table 21: Properties with Private Agreements Noise Criteria





# Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       |                           | WLs                       |            | dB(A)      | Data Maggurad |  |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|--|
| Туре                                                                        | No.   | Leq                       | Lmax                      | aB(A) Leq  | Lmax       | Date measured |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |  |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 116        | 119        | 6/2/13        |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |  |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |  |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |  |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |  |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |  |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |  |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |  |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |  |
| Excavator (PC4000)                                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |  |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)                 | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |  |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |  |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |  |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.





4 April 2013

Ref: 04035/4721

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

#### RE: MARCH 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Wednesday 27<sup>th</sup> March, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

#### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

| Table 1                               |                         |      |                                |                                        |  |  |  |  |
|---------------------------------------|-------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|
| WCC Attended Noise Monitoring Program |                         |      |                                |                                        |  |  |  |  |
| Monitoring Point                      | Duration                | ID   | Receiver                       | Relevant Monitoring Requirements       |  |  |  |  |
| A                                     | 15 minutes <sup>1</sup> | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |
| B1                                    | $60 \text{ minutes}^2$  | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |
| ы                                     | 00 minutes              | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |
| B2                                    | $60 \text{ minutes}^2$  | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |
| DZ                                    | 00 111110165            | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |
| C                                     | 15 minutes <sup>1</sup> | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |
| C                                     |                         | R11* | Glenara                        | Filvale Agreement                      |  |  |  |  |
| D                                     | 60 minutes <sup>2</sup> | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |
| E                                     | 60 minutes <sup>2</sup> | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |
| F                                     | 60 minutes <sup>2</sup> | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |
| G                                     | 15 minutes <sup>1</sup> | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |
| Н                                     | 15 minutes <sup>1</sup> | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |
| I                                     | 60 minutes <sup>2</sup> | R57  | Kurrara Street <sup>@</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |
| J                                     | 15 minutes <sup>1</sup> |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |
| К                                     | 15 minutes <sup>1</sup> | R21* | Alco Park                      | Private Agreement                      |  |  |  |  |
| L                                     | 15 minutes <sup>1</sup> | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

#### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is





required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

#### **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather stations.

#### WCC Operations

WCC operations on 27<sup>th</sup> March 2013 had the 3600 excavator in Strip 19 on top of the hill in the prestrip at RL420m; the PC4000 excavator in Strip 12 west at RL300m; a 1900 excavator in Strip 13 west at RL340m and a 1900 excavator in Strip 11 centre at RL280m. Two overburden truck fleets were running to the RL390m western dump on day and night shift; while one overburden fleet was hauling gravel from the 3600 to the new Mine Infrastructure Area pad. One truck fleet was coaling from the bottom of the pit to the ROM pad. Scraper operations were spreading topsoil on the eastern rehab on day shift only. The crushing plant operated to 3:30am with no trains loaded.

#### Noise Compliance Assessment

The results of the noise measurements are shown below in **Tables 2** and **3**.


|                       | Table 2 |        |               |                     |               |                                                     |  |  |  |  |  |  |
|-----------------------|---------|--------|---------------|---------------------|---------------|-----------------------------------------------------|--|--|--|--|--|--|
|                       |         | WC     | C Noise Monit | oring Results –     | 27 March 2013 | (Day)                                               |  |  |  |  |  |  |
|                       |         | dB(A), | Criterion     | Inversion           | Wind          |                                                     |  |  |  |  |  |  |
| Location              | Time    | Leq    | dB(A) Leq     | <sup>o</sup> C/100m | speed/ dir    | Identified Noise Sources                            |  |  |  |  |  |  |
| A R5 Rosehill         | 1:15 pm | 36     | 35            | n/a                 | 1.8/253       | Birds & insects (36), traffic (25), WCC inaudible   |  |  |  |  |  |  |
| B1 R7 83 Wadwells     | 1:22 pm | 39     | 37            | n/a                 | 1.6/244       | Birds & insects (39), WCC inaudible                 |  |  |  |  |  |  |
| Lane/R8 Almawillee    |         |        |               |                     |               |                                                     |  |  |  |  |  |  |
| B2 R9Gedhurst/ R22    | 1:35 pm | 37     | 37/36*        | n/a                 | 1.4/220       | Birds & insects (36), traffic (30), WCC (22)        |  |  |  |  |  |  |
| Mountain View         |         |        |               |                     |               |                                                     |  |  |  |  |  |  |
| C R10 Meadholme/      | 2:27 pm | 38     | 39            | n/a                 | 1.9/202       | Birds & insects (36), plane (32), WCC inaudible     |  |  |  |  |  |  |
| R11 Glenara           |         |        |               |                     |               |                                                     |  |  |  |  |  |  |
| D R24 Hazeldene       | 2:50 pm | 43     | 37            | n/a                 | 1.7/183       | Birds (39), traffic (38), train (36), WCC inaudible |  |  |  |  |  |  |
| E R12 Railway Cottage | 4:48 pm | 38     | 38            | n/a                 | 1.5/269       | Birds & insects (36), traffic (32), WCC inaudible   |  |  |  |  |  |  |
| F R96 Talavera        | 3:42 pm | 37     | 38            | n/a                 | 1.6/238       | Birds & insects (37), WCC (15)                      |  |  |  |  |  |  |
| <b>G</b> R97          | 3:05 pm | 32     | 35            | n/a                 | 2.0/169       | Birds & insects (32), WCC (20)                      |  |  |  |  |  |  |
| H R98 Kyooma          | 3:23 pm | 39     | 36            | n/a                 | 1.6/189       | Birds & insects (39), WCC (20)                      |  |  |  |  |  |  |
| I R57 Kurrara St      | 4:43 pm | 51     | 35            | n/a                 | 1.5/269       | Traffic (49), trains (45), WCC inaudible            |  |  |  |  |  |  |
| J R57 Coronation Ave  | 2:45 pm | 48     | 35            | n/a                 | 1.5/184       | Traffic (48), birds & insects (39), WCC inaudible   |  |  |  |  |  |  |
| K R21 Alco Park       | 3:55 pm | 50     | 35            | n/a                 | 1.7/179       | Cars (50), traffic (37), trains (36), WCC inaudible |  |  |  |  |  |  |
| L R103                | 4:19 pm | 39     | 35            | n/a                 | 1.6/297       | Trains, (36), traffic (35), WCC inaudible           |  |  |  |  |  |  |

Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

|                       | Table 3              |                     |           |                |                     |                 |                                                   |  |  |  |  |  |
|-----------------------|----------------------|---------------------|-----------|----------------|---------------------|-----------------|---------------------------------------------------|--|--|--|--|--|
|                       |                      | WC                  | C Noise M | onitoring Resu | lts – 27 March 2    | 2013 (Evening/I | Night)                                            |  |  |  |  |  |
|                       |                      | dB(A),              | dB(A),    | Criterion      | Inversion           | Wind            |                                                   |  |  |  |  |  |
| Location              | Time                 | L1                  | Leq       | dB(A) Leq      | <sup>o</sup> C/100m | speed/ dir      | Identified Noise Sources                          |  |  |  |  |  |
|                       |                      | (1min) <sup>1</sup> |           |                |                     |                 |                                                   |  |  |  |  |  |
| A R5 Rosehill         | 7:50 pm              | n/a                 | 42        | 35             | +7.4                | 0.3/119         | Birds & insects (42), dog (31), WCC inaudible     |  |  |  |  |  |
| B1 R7 83 Wadwells     | 10:00 pm             | <30                 | 43        | 37             | +7.0                | 0.6/226         | Insects (43), WCC (25)                            |  |  |  |  |  |
| Lane/R8 Almawillee    |                      |                     |           |                |                     |                 |                                                   |  |  |  |  |  |
| B2 R9Gedhurst/ R22    | 8:10 pm              | 32                  | 39        | 37/36*         | +7.7                | 1.0/43          | Birds & insects (39), traffic (28), WCC (25)      |  |  |  |  |  |
| Mountain View         |                      |                     |           |                |                     |                 |                                                   |  |  |  |  |  |
| C R10 Meadholme/      | 11:03 pm             | <35                 | 41        | 39             | +7.5                | 1.0/32          | Insects (38), traffic (35), WCC (32)              |  |  |  |  |  |
| R11 Glenara           |                      |                     |           |                |                     |                 |                                                   |  |  |  |  |  |
| D R24 Hazeldene       | 11:21 pm             | <30                 | 41        | 37             | +6.7                | 1.9/6           | Traffic (40), insects (34), WCC (25)              |  |  |  |  |  |
| E R12 Railway Cottage | 11:26 pm             | <25                 | 37        | 38             | +6.7                | 2.0/345         | Insects (37), WCC (20), traffic (18)              |  |  |  |  |  |
| F R96 Talavera        | 10:20 pm             | 38                  | 46        | 37             | +6.9                | 0.6/190         | Insects (46), WCC (30)                            |  |  |  |  |  |
| <b>G</b> R97          | 9:40 pm              | <25                 | 43        | 35             | +7.8                | 1.7/335         | Insects (43), WCC (17)                            |  |  |  |  |  |
| H R98 Kyooma          | 10:00 pm             | <25                 | 34        | 36             | +7.2                | 0.3/351         | Insects (30), WCC (15)                            |  |  |  |  |  |
| I R57 Kurrara St      | 8:01 pm              | n/a                 | 52        | 35             | +7.0                | 0.8/97          | Trains (51), insects (40), traffic (38), WCC      |  |  |  |  |  |
|                       |                      |                     |           |                |                     |                 | inaudible                                         |  |  |  |  |  |
| J R57 Coronation Ave  | 9:20 pm              | 38                  | 42        | 35             | +8.5                | 1.2/317         | Train (40), traffic (35), insects (32), WCC (32)  |  |  |  |  |  |
| K R21 Alco Park       | 9:05 pm              | 36                  | 47        |                | +7.5                | 1.2/317         | Insects (46), trains (36), traffic (37), WCC (32) |  |  |  |  |  |
| L R103                | 9:23 pm              | n/a                 | 48        | 35             | +6.7                | 1.6/325         | Train (45), insects (44), WCC inaudible           |  |  |  |  |  |
| 1                     | 1 + 1 + (1 - min) fr | com mino no         | vice only | -              |                     | -               | •                                                 |  |  |  |  |  |

1. L1 (1 min) from mine noise only.

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period.





Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

# Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.





We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Ponte

Neil Pennington Acoustical Consultant

Review:

an

Ross Hodge Acoustical Consultant



SPECTRUM COUSTICS

# Appendix I



Attended Noise Monitoring Locations





# Appendix II

Noise Limits

|       | Location                      | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|-------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|       | Location                      | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7    | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9    | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12   | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22   | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24   | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96   | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c | other privately-owned land    | 35                         | 35                         | 45                    | 35                          | 40                         |

# LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |  |  |  |
|-----|----------------|-----------------------------------|-----------------------------------------|--|--|--|
| R8  | "Almawillee"   | 40                                | 45                                      |  |  |  |
| R10 | "Meadholme"    | 40                                | 45                                      |  |  |  |
| R11 | "Glenara"      | 40                                | 45                                      |  |  |  |
| R20 | "Tonsley Park" | 40                                | 45                                      |  |  |  |
| R21 | "Alco Park"    | 40                                | 45                                      |  |  |  |
| R98 | "Kyooma"       | 40                                | 45                                      |  |  |  |

#### Table 21: Properties with Private Agreements Noise Criteria



# Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       | EA S                      | WLs                       |            | dB(A)      | Data Maggurad |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|
| Туре                                                                        | No.   | Leq                       | Lmax                      | aB(A) Leq  | Lmax       | Date measured |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 116        | 119        | 6/2/13        |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |
| Excavator (PC4000)                                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)                 | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.





29 April 2013

Ref: 04035/4757

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

# **RE: APRIL 2013 NOISE MONITORING RESULTS – WERRIS CREEK MINE**

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Tuesday 23rd April, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

# Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

|                  |                         |       | Table 1                        |                                        |  |  |  |
|------------------|-------------------------|-------|--------------------------------|----------------------------------------|--|--|--|
|                  |                         | WCC / | Attended Noise Monitoring      | J Program                              |  |  |  |
| Monitoring Point | Duration                | ID    | Receiver                       | Relevant Monitoring Requirements       |  |  |  |
| A                | 15 minutes <sup>1</sup> | R5    | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |
| B1               | $60 \text{ minutes}^2$  | R7    | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |
|                  | 00 111110163            | R8*   | Almawillee                     | Private Agreement                      |  |  |  |
| B2               | $60 \text{ minutes}^2$  | R9    | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |
| DZ               | 00 111110163            | R22   | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |
| C                | 15 minutes <sup>1</sup> | R10*  | Meadholme                      | Private Agreement                      |  |  |  |
| C                | 15 minutes              | R11*  | Glenara                        | r IIvale Agreement                     |  |  |  |
| D                | 60 minutes <sup>2</sup> | R24   | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |
| E                | 60 minutes <sup>2</sup> | R12   | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |
| F                | 60 minutes <sup>2</sup> | R96   | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |
| G                | 15 minutes <sup>1</sup> | R97   |                                | PA10_0059 Private Property outside NMZ |  |  |  |
| Н                | 15 minutes <sup>1</sup> | R98*  | Kyooma                         | Private Agreement                      |  |  |  |
| I                | 60 minutes <sup>2</sup> | R57   | Kurrara Street <sup>@</sup>    | 60 minutes as per EPL 12290            |  |  |  |
| J                | 15 minutes <sup>1</sup> |       | Coronation Avenue <sup>®</sup> | PA10_0059 Private Property outside NMZ |  |  |  |
| К                | 15 minutes <sup>1</sup> | R21*  | Alco Park                      | Private Agreement                      |  |  |  |
| L                | 15 minutes <sup>1</sup> | R103  |                                | PA10_0059 Private Property outside NMZ |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is





required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

# **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather stations.

# WCC Operations

WCC operations on 23<sup>rd</sup> April 2013 had the 3600 excavator in Strip 12 centre at RL300m; the PC4000 excavator in Strip 11 centre at RL280m; a 1900 excavator in Strip 16 centre at RL410m and a 1900 excavator in Strip 14 west at RL370m. The overburden truck fleets were running to the RL390m western dump on day and night shift. The crushing plant operated to 3:30am with no trains loaded.

### **Noise Compliance Assessment**

The results of the noise measurements are shown below in **Tables 2** and **3**.



|                       | Table 2 |        |               |                     |                 |                                                      |  |  |  |  |  |  |
|-----------------------|---------|--------|---------------|---------------------|-----------------|------------------------------------------------------|--|--|--|--|--|--|
|                       |         | W      | CC Noise Moni | toring Results -    | - 23 April 2013 | (Day)                                                |  |  |  |  |  |  |
|                       |         | dB(A), | Criterion     | Inversion           | Wind            |                                                      |  |  |  |  |  |  |
| Location              | Time    | Leq    | dB(A) Leq     | <sup>o</sup> C/100m | speed/ dir      | Identified Noise Sources                             |  |  |  |  |  |  |
| A R5 Rosehill         | 2:40 pm | 32     | 35            | n/a                 | 2.5/288         | Birds & insects (29), traffic (29), WCC inaudible    |  |  |  |  |  |  |
| B1 R7 83 Wadwells     | 4:00 pm | 39     | 37            | n/a                 | 2.2/247         | Birds & insects (38), cattle (28), horses (25), WCC  |  |  |  |  |  |  |
| Lane/R8 Almawillee    |         |        |               |                     |                 | inaudible                                            |  |  |  |  |  |  |
| B2 R9Gedhurst/ R22    | 1:25 pm | 38     | 37/36*        | n/a                 | 2.2/275         | Birds & insects (37), traffic (30), WCC (20)         |  |  |  |  |  |  |
| Mountain View         |         |        |               |                     |                 |                                                      |  |  |  |  |  |  |
| C R10 Meadholme/      | 3:02 pm | 39     | 39            | n/a                 | 2.6/282         | Birds & insects (38), traffic (31), WCC barely       |  |  |  |  |  |  |
| R11 Glenara           |         |        |               |                     |                 | audible                                              |  |  |  |  |  |  |
| D R24 Hazeldene       | 3:21 pm | 35     | 37            | n/a                 | 1.9/283         | Traffic (33), birds & insects (31), WCC barely       |  |  |  |  |  |  |
|                       |         |        |               |                     |                 | audible                                              |  |  |  |  |  |  |
| E R12 Railway Cottage | 5:03 pm | 49     | 38            | n/a                 | 3.9/216         | Traffic (48), birds & insects (40), WCC inaudible    |  |  |  |  |  |  |
| F R96 Talavera        | 2:30 pm | 43     | 38            | n/a                 | 2.5/287         | Birds & insects (42), traffic (35), WCC (25)         |  |  |  |  |  |  |
| <b>G</b> R97          | 1:50 pm | 35     | 35            | n/a                 | 3.0/303         | Birds & insects (35), WCC (15)                       |  |  |  |  |  |  |
| H R98 Kyooma          | 2:10 pm | 36     | 36            | n/a                 | 2.1/272         | Birds & insects (36), WCC (26)                       |  |  |  |  |  |  |
| I R57 Kurrara St      | 5:08 pm | 47     | 35            | n/a                 | 3.9/216         | Trains (44), birds & insects (42), traffic (40), WCC |  |  |  |  |  |  |
|                       |         |        |               |                     |                 | inaudible                                            |  |  |  |  |  |  |
| J R57 Coronation Ave  | 4:50 pm | 42     | 35            | n/a                 | 3.9/279         | Traffic (38), trains (38), birds & insects (36), WCC |  |  |  |  |  |  |
|                       |         |        |               |                     |                 | inaudible                                            |  |  |  |  |  |  |
| K R21 Alco Park       | 4:30 pm | 41     | 39            | n/a                 | 2.5/266         | Birds & insects (39), traffic (36), WCC inaudible    |  |  |  |  |  |  |
| L R103                | 3:41 pm | 34     | 35            | n/a                 | 1.5/272         | Trains, (30), birds & insects (28), domestic noise   |  |  |  |  |  |  |
|                       |         |        |               |                     |                 | (28), traffic (25), WCC inaudible                    |  |  |  |  |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

|                       |          |         |            |                | Table 3             |                |                                         |
|-----------------------|----------|---------|------------|----------------|---------------------|----------------|-----------------------------------------|
|                       |          | W       | CC Noise N | Ionitoring Res | ults – 23 April 2   | 013 (Evening/N | light)                                  |
|                       |          | dB(A),  | dB(A),     | Criterion      | Inversion           | Wind           |                                         |
| Location              | lime     |         | Leq        | dB(A) Leq      | <sup>0</sup> C/100m | speed/ dir     | Identified Noise Sources                |
|                       |          | (1min)' |            |                |                     |                |                                         |
| A R5 Rosehill         | 9:05 pm  | n/a     | 38         | 35             | +9.5                | 1.6/189        | Pump? (35), traffic (34), WCC inaudible |
| B1 R7 83 Wadwells     | 10:25 pm | 37      | 33         | 37             | +10.3               | 0.9/188        | WCC (32), cattle (26)                   |
| Lane/R8 Almawillee    |          |         |            |                |                     |                |                                         |
| B2 R9Gedhurst/ R22    | 8:00 pm  | 34      | 30         | 37/36*         | +8.5                | 0.8/154        | Traffic (27), insects (22), WCC (25)    |
| Mountain View         |          |         |            |                |                     |                |                                         |
| C R10 Meadholme/      | 9:26 pm  | n/a     | 33         | 39             | +8.9                | 1.2/171        | Traffic (33), WCC inaudible             |
| R11 Glenara           |          |         |            |                |                     |                |                                         |
| D R24 Hazeldene       | 9:45 pm  | n/a     | 40         | 37             | +9.6                | 1.1/182        | Traffic (40), WCC inaudible             |
| E R12 Railway Cottage | 11:40 pm | <25     | 22         | 38             | +10.5               | 0.2/75         | WCC (20), insects (16),                 |
| F R96 Talavera        | 8:50 pm  | 35      | 27         | 37             | +9.2                | 1.3/172        | WCC (26), traffic (21)                  |
| <b>G</b> R97          | 8:05 pm  | 38      | 35         | 35             | +7.7                | 0.4/142        | WCC (34), insects (25), traffic (25)    |
| H R98 Kyooma          | 8:25 pm  | 41      | 34         | 36             | +8.6                | 0.9/156        | WCC (34)                                |
| I R57 Kurrara St      | 11:28 pm | 40      | 42         | 35             | +10.0               | 0.3/92         | Trains (42), <b>WCC (32)</b>            |
| J R57 Coronation Ave  | 11:10 pm | n/a     | 40         | 35             | +10.4               | 1.0/179        | Train (39), traffic (34), WCC inaudible |
| K R21 Alco Park       | 10:52 pm | 40      | 44         | 37             | +10.4               | 1.0/194        | Traffic (41), trains (40), WCC (32)     |
| L R103                | 10:02 pm | 39      | 38         | 35             | +9.7                | 1.1/192        | Traffic (37), WCC (32)                  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.



The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.





We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

# Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Ponte

Neil Pennington Acoustical Consultant

Review:

Van

Ross Hodge Acoustical Consultant



SPECTRUM ACOUSTICS

# Appendix I



Attended Noise Monitoring Locations





# Appendix II

Noise Limits

|       | Location                      | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|-------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|       | Location                      | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7    | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9    | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12   | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22   | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24   | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96   | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c | other privately-owned land    | 35                         | 35                         | 45                    | 35                          | 40                         |

# LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |  |  |  |
|-----|----------------|-----------------------------------|-----------------------------------------|--|--|--|
| R8  | "Almawillee"   | 40                                | 45                                      |  |  |  |
| R10 | "Meadholme"    | 40                                | 45                                      |  |  |  |
| R11 | "Glenara"      | 40                                | 45                                      |  |  |  |
| R20 | "Tonsley Park" | 40                                | 45                                      |  |  |  |
| R21 | "Alco Park"    | 40                                | 45                                      |  |  |  |
| R98 | "Kyooma"       | 40                                | 45                                      |  |  |  |

#### Table 21: Properties with Private Agreements Noise Criteria



# Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       | EA S                      | WLs                       |            | dB(A)      | Dete Measured |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|
| Туре                                                                        | No.   | Leq                       | Lmax                      | dB(A) Leq  | Lmax       | Date Measured |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 116        | 119        | 6/2/13        |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |
| Excavator (PC4000)                                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)                 | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.



# Appendix 5 – Blasting Monitoring Results

#### WERRIS CREEK COAL BLASTING DATABASE

| Chat    |            |            | Location             |         | WERRIS CREEK COAL BLASTING RESULTS FEBRUARY 2013 |         |            |                  |            |                  |            |         |            |         |
|---------|------------|------------|----------------------|---------|--------------------------------------------------|---------|------------|------------------|------------|------------------|------------|---------|------------|---------|
| Shot    | Date fired | Time Fired |                      | Туре    | Glenara R11                                      |         | Tonsley    | Tonsley Park R20 |            | Werris Creek R62 |            | ra R96  | COMPL      | IANCE   |
| number  |            |            |                      |         | Vib (mm/s)                                       | OP (dB) | Vib (mm/s) | OP (dB)          | Vib (mm/s) | OP (dB)          | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB) |
| 2013-08 | 1/02/2013  | 12:38      | S12_13-14_Ccoal pt2  | IB      | <0.25                                            | <109.8  | <0.25      | <109.8           | <0.25      | <109.8           | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-09 | 8/02/2012  | 13:16      | S16_2-4_385          | OB      | <0.25                                            | <109.8  | 1.83       | 106.0            | 0.58       | 102.6            | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-10 | 14/02/2013 | 12:11      | S13_8-10_350 +PS     | OB      | <0.25                                            | <109.8  | 0.90       | 106.0            | <0.25      | <109.8           | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-11 | 20/02/2013 | 16:29      | S12_13_Decoal        | IB      | <0.25                                            | <109.8  | <0.25      | <109.8           | <0.25      | <109.8           | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-12 | 21/02/2013 | 13:18      | S13_10-12_A1coal +PS | OB      | <0.25                                            | <109.8  | 1.45       | 106.6            | 0.34       | 99.7             | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-13 | 27/02/2013 | 13:10      | S13_3-9_350 TSB27    | TSB     | <0.25                                            | <109.8  | 1.43       | 104.5            | 0.40       | 103.0            | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-14 | 28/02/2013 | 13:37      | S12_13_DEcoal        | IB      | <0.25                                            | <109.8  | <0.25      | <109.8           | <0.25      | <109.8           | <0.25      | <109.8  | 10.00      | 120.0   |
| TOTALS  | FEBRUARY   | # BLAST    | 7                    | AVERAGE | <0.25                                            | <109.8  | 1.40       | 105.8            | 0.44       | 101.8            | <0.25      | <109.8  | 5.00       | 115.0   |
| TOTALS  | FEBRUARY   | # BLAST    | 7                    | HIGHEST | <0.25                                            | <109.8  | 1.83       | 106.6            | 0.58       | 103.0            | <0.25      | <109.8  | 10.00      | 120.0   |
| TOTALS  | ANNUAL     | # BLAST    | 75                   | AVERAGE | 0.21                                             | 104.5   | 0.93       | 102.2            | 0.41       | 99.1             | 0.29       | 105.4   | 5.00       | 115.0   |
| TOTALS  | ANNUAL     | %          | >115dB(L) or 5mm/s   | 75      | 0%                                               | 0%      | 0%         | 0%               | 0%         | 0%               | 0%         | 0%      | 5%         | 5%      |

#### WERRIS CREEK COAL BLASTING DATABASE

| Chat    |            |            | WERRIS CREEK COAL BLASTING RESULTS MARCH |         |            |         |            |          |            | CH 2013  |            |         |            |         |
|---------|------------|------------|------------------------------------------|---------|------------|---------|------------|----------|------------|----------|------------|---------|------------|---------|
| Shot    | Date fired | Time Fired | Location                                 | Туре    | Glena      | ra R11  | Tonsley    | Park R20 | Werris C   | reek R62 | Talave     | ra R96  | COMPL      | IANCE   |
| number  |            |            |                                          |         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB) |
| 2013-15 | 5/03/2013  | 13:39      | S12_11-12_Gcoal                          | IB      | <0.25      | <109.8  | 0.98       | 113.9    | 0.69       | 109.3    | 0.55       | 107.5   | 10.00      | 120.0   |
| 2013-16 | 7/03/2013  | 13:30      | S12_14-17_Decoal                         | IB      | <0.25      | <109.8  | 0.43       | 98.9     | <0.25      | <109.8   | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-17 | 11/03/2013 | 12:15      | S13_13-21_A1coal                         | OB      | <0.25      | <109.8  | 0.93       | 104.7    | 0.37       | 104.3    | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-18 | 13/03/2013 | 12:18      | S13_22-23_370TSB25                       | TSB     | <0.25      | <109.8  | 0.48       | 103.2    | <0.25      | <109.8   | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-19 | 20/03/2013 | 9:45       | Hill Dam (Strip 21)                      | OB      | <0.25      | <109.8  | 0.75       | 107.5    | 0.29       | 106.7    | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-20 | 25/03/2013 | 12:15      | S12_18-21_290TSB30                       | TSB     | <0.25      | <109.8  | 0.58       | 91.4     | <0.25      | <109.8   | <0.25      | <109.8  | 10.00      | 120.0   |
| 2013-21 | 26/03/2013 | 12:17      | S11_12-17_Gcoal pt1                      | IB      | <0.25      | <109.8  | 0.33       | 96.3     | <0.25      | <109.8   | 0.48       | 100.8   | 10.00      | 120.0   |
| TOTALS  | MARCH      | # BLAST    | 7                                        | AVERAGE | <0.25      | <109.8  | 0.64       | 102.3    | 0.45       | 106.8    | 0.52       | 104.2   | 5.00       | 115.0   |
| TOTALS  | MARCH      | # BLAST    | 7                                        | HIGHEST | <0.25      | <109.8  | 0.98       | 113.9    | 0.69       | 109.3    | 0.55       | 107.5   | 10.00      | 120.0   |
| TOTALS  | ANNUAL     | # BLAST    | 82                                       | AVERAGE | 0.21       | 104.5   | 0.91       | 102.2    | 0.42       | 99.8     | 0.31       | 105.3   | 5.00       | 115.0   |
| TOTALS  | ANNUAL     | %          | >115dB(L) or 5mm/s                       | 82      | 0%         | 0%      | 0%         | 0%       | 0%         | 0%       | 0%         | 0%      | 5%         | 5%      |

|         |            |         |                         |         |            |         |            |         |            |         | v          | VERRIS CR | EEK COAL E | BLASTING | RESULTS            |            |                   |           |     |        |
|---------|------------|---------|-------------------------|---------|------------|---------|------------|---------|------------|---------|------------|-----------|------------|----------|--------------------|------------|-------------------|-----------|-----|--------|
| number  | Date fired | Fired   | Location                | Туре    | Glenar     | a R11   | Tonsley F  | ark R20 | Werris Cr  | eek R62 | Talaver    | a R96     | COMPL      | IANCE    | ARTC Culvert       | COMPLIANCE | TEMPERATURE       | wi        | ND  | FUME   |
|         |            |         |                         |         | Vib (mm/s) | OP (dB)   | Vib (mm/s) | OP (dB)  | Vib (mm/s) OP (dB) | Vib (mm/s) | Inversion oC/100m | Direction | m/s | 0 to 5 |
| 2013-22 | 2/04/2013  | 15:06   | S13_14-18_A1coal        | OB      | <0.25      | <109.8  | 1.00       | 104.9   | 0.45       | 101.0   | <0.25      | <109.8    | 10.00      | 120.0    | Not Monitored      | 50.00      | -0.8              | 265       | 1.5 | 0      |
| 2013-23 | 8/04/2013  | 12:12   | S11_6-10_Gcoal          | IB      | <0.25      | <109.8  | 1.45       | 103.0   | 1.19       | 107.3   | <0.25      | <109.8    | 10.00      | 120.0    | 13.20 -            | 50.00      | -1.7              | 182       | 2.9 | 0      |
| 2013-24 | 11/04/2013 | 13:17   | S11_12-17_Gcoal pt2     | IB      | 0.38       | 109.7   | 1.00       | 108.9   | 0.66       | 108.3   | <0.25      | <109.8    | 10.00      | 120.0    | Not Monitored      | 50.00      | -1.3              | 154       | 2.5 | 0      |
| 2013-25 | 12/04/2013 | 13:07   | S12_11_Decoal pt1       | IB      | <0.25      | <109.8  | <0.25      | <109.8  | <0.25      | <109.8  | <0.25      | <109.8    | 10.00      | 120.0    | Not Monitored      | 50.00      | -1.5              | 165       | 2.1 | 0      |
| 2013-26 | 16/04/2013 | 13:12   | S14_11-20_370 trim      | OB      | <0.25      | <109.8  | 0.55       | 104.7   | <0.25      | <109.8  | <0.25      | <109.8    | 10.00      | 120.0    | Not Monitored      | 50.00      | -1.7              | 345       | 2.4 | 0      |
| 2013-27 | 17/04/2013 | 13:11   | S12_11_Decoal pt2       | IB      | <0.25      | <109.8  | <0.25      | <109.8  | <0.25      | <109.8  | <0.25      | <109.8    | 10.00      | 120.0    | Not Monitored      | 50.00      | -2.8              | 323       | 3.9 | 0      |
| 2013-28 | 22/04/2013 | 12:13   | S12_18_290_TSB31/Decoal | TSB/IB  | <0.25      | <109.8  | 0.40       | 94.2    | <0.25      | <109.8  | <0.25      | <109.8    | 10.00      | 120.0    | Not Monitored      | 50.00      | -2.9              | 319       | 4.4 | 0      |
| 2013-29 | 26/04/2013 | 12:12   | S16_5-8_385             | OB      | 0.13       | 95.1    | 0.95       | 99.8    | 0.34       | 99      | <0.25      | <109.8    | 10.00      | 120.0    | 1.83 -             | 50.00      | -2.6              | 174       | 1.8 | 0      |
| TOTALS  | APRIL 2013 | # BLAST | 8                       | AVERAGE | 0.26       | 102.4   | 0.89       | 102.6   | 0.66       | 103.9   | <0.25      | <109.8    | 5.00       | 115.0    |                    |            |                   |           |     |        |
| TOTALS  | APRIL 2013 | # BLAST | 8                       | HIGHEST | 0.38       | 109.7   | 1.45       | 108.9   | 1.19       | 108.3   | <0.25      | <109.8    | 10.00      | 120.0    | 1                  |            |                   |           |     |        |
| TOTALS  | ANNUAL     | # BLAST | 8                       | AVERAGE | 0.26       | 102.4   | 0.89       | 102.6   | 0.66       | 103.9   | <0.25      | <109.8    | 5.00       | 115.0    | 1                  |            |                   |           |     |        |
| TOTALS  | ANNUAL     | %       | >115dB(L) or 5mm/s      | 8       | 0%         | 0%      | 0%         | 0%      | 0%         | 0%      | 0%         | 0%        | 5%         | 5%       |                    |            |                   |           |     |        |

# Appendix 6 – Groundwater Monitoring Results





**Environmental Division** 

|              | CERTIFIC                             | CATE OF ANALYSIS        |                                                       |
|--------------|--------------------------------------|-------------------------|-------------------------------------------------------|
| Work Order   | ES1307073                            | Page                    | : 1 of 6                                              |
| Client       |                                      | Laboratory              | : Environmental Division Sydney                       |
| Contact      | : GUNNEDAH LABORATORY                | Contact                 | : Client Services                                     |
| Address      | : 5-7                                | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                            |                         |                                                       |
|              | GUNNEDAH NSW 2380                    |                         |                                                       |
| E-mail       | : gun.lab@alsglobal.com              | E-mail                  | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                       | Telephone               | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                       | Facsimile               | : +61-2-8784 8500                                     |
| Project      | : WERRIS CREEK GROUNDWATER 6 MONTHLY | QC Level                | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 5723                               |                         |                                                       |
| C-O-C number | :                                    | Date Samples Received   | : 26-MAR-2013                                         |
| Sampler      | : BP/CE                              | Issue Date              | : 04-APR-2013                                         |
| Site         |                                      |                         |                                                       |
|              |                                      | No. of samples received | : 6                                                   |
| Quote number | : SY/417/12                          | No. of samples analysed | : 6                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Descriptive Results



NATA Accredited Laboratory 825 Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories  | Position                 | Accreditation Category |  |
|--------------|--------------------------|------------------------|--|
| Ankit Joshi  | Inorganic Chemist        | Sydney Inorganics      |  |
| Ashesh Patel | Inorganic Chemist        | Sydney Inorganics      |  |
| Hoa Nguyen   | Senior Inorganic Chemist | Sydney Inorganics      |  |
| Kim Phan     | Sample Receipt Clerk     | ACIRL Sampling         |  |
| Pabi Subba   | Senior Organic Chemist   | Sydney Organics        |  |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- AC01: Bore data supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC02: Sampling data supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC04: Field observations supplied by ALS ACIRL.
- EK067G: It has been noted that Reactive P is greater than Total P for sample ID( MW5), however this difference is within the limits of experimental variation.
- EK071G: It has been noted that Reactive P is greater than Total P for sample ID:(MW3), however this difference is within the limits of experimental variation.

# Page : 3 of 6 Work Order : ES1307073 Client : ACIRL PTY LTD Project : WERRIS CREEK GROUNDWATER 6 MONTHLY



| Sub-Matrix: WATER (Matrix: WATER)            |                 | Cli        | ent sample ID  | MW1               | MW2               | MW3               | MW4B              | MW5               |
|----------------------------------------------|-----------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl              | ient sampl | ng date / time | 25-MAR-2013 10:40 | 25-MAR-2013 11:00 | 25-MAR-2013 12:00 | 25-MAR-2013 12:40 | 25-MAR-2013 12:30 |
| Compound                                     | CAS Number      | LOR        | Unit           | ES1307073-001     | ES1307073-002     | ES1307073-003     | ES1307073-004     | ES1307073-005     |
| AC01: Bore Data                              |                 |            |                |                   |                   |                   |                   |                   |
| Standing Water Level                         |                 | 0.01       | m              | 54.1              | 25.4              | 15.1              | 10.4              | 7.69              |
| Stick up                                     |                 | 0.01       | m              | 0.25              | 0.15              | 0.95              | 0.70              | 1.15              |
| AC02: Sampling Data                          |                 |            |                |                   |                   |                   |                   |                   |
| Purge Type                                   |                 | -          |                | BAIL              | ТАР               | BAIL              | BAIL              | BAIL              |
| AC03: Field Tests                            |                 |            |                |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated) |                 | 1          | µS/cm          | 1180              | 821               | 249               | 978               | 2260              |
| рН                                           |                 | 0.01       | pH Unit        | 7.05              | 7.58              | 7.36              | 7.76              | 7.57              |
| Temperature                                  |                 | 0.1        | °C             | 22.5              | 21.8              | 21.9              | 20.5              | 22.2              |
| EA005P: pH by PC Titrator                    |                 |            |                |                   |                   |                   |                   |                   |
| pH Value                                     |                 | 0.01       | pH Unit        | 7.22              | 7.62              | 7.15              | 7.77              | 7.64              |
| EA010P: Conductivity by PC Titrator          |                 |            |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C               |                 | 1          | μS/cm          | 1220              | 848               | 245               | 1020              | 2390              |
| EA015: Total Dissolved Solids                |                 |            |                |                   |                   |                   |                   |                   |
| Total Dissolved Solids @180°C                |                 | 10         | mg/L           | 664               | 370               | 164               | 510               | 1520              |
| EK057G: Nitrite as N by Discrete Analyse     | r               |            |                |                   |                   |                   |                   |                   |
| Nitrite as N                                 |                 | 0.01       | mg/L           | 0.01              | <0.01             | <0.01             | <0.01             | 0.06              |
| EK058G: Nitrate as N by Discrete Analyse     | ər              |            |                |                   |                   |                   |                   |                   |
| Nitrate as N                                 | 14797-55-8      | 0.01       | mg/L           | 4.67              | 0.01              | 1.65              | 1.35              | 0.11              |
| EK059G: Nitrite plus Nitrate as N (NOx) b    | y Discrete Ana  | lyser      |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                       |                 | 0.01       | mg/L           | 4.68              | 0.01              | 1.65              | 1.35              | 0.17              |
| EK061G: Total Kjeldahl Nitrogen By Discre    | ete Analyser    |            |                |                   |                   | • <del>-</del>    |                   |                   |
| Total Kjeldahl Nitrogen as N                 |                 | 0.1        | mg/L           | 1.1               | 0.1               | 0.7               | 0.6               | 8.2               |
| EK062G: Total Nitrogen as N (TKN + NOx)      | by Discrete Ar  | nalyser    |                | - ^               |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N             |                 | 0.1        | mg/L           | 5.8               | 0.1               | 2.4               | 2.0               | 8.4               |
| EK067G: Total Phosphorus as P by Discre      | ete Analyser    | 0.01       | mg/l           | 0.40              | 0.44              | 0.00              | 0.40              | 4.07              |
| Total Phosphorus as P                        |                 | 0.01       | mg/L           | 0.13              | 0.14              | 0.39              | 0.10              | 1.27              |
| EK071G: Reactive Phosphorus as P by dis      | screte analyser | 0.01       | ma/l           | 0.11              | 0.02              | 0.41              | 0.02              | 1.49              |
|                                              | 14265-44-2      | 0.01       | IIIY/L         | V.11              | 0.02              | 0.41              | 0.02              | 1.40              |
| EP080/071: Total Petroleum Hydrocarbons      | S               | 50         | uq/l           | <50               | <50               | <50               | <50               | <50               |
| C15 - C18 Fraction                           |                 | 100        | µ9/⊏<br>⊔0/I   | <100              | <100              | <100              | <100              | <100              |
| C10 - C20 Fraction                           |                 | 50         | µ9/⊏<br>ua/l   | <50               | <50               | <50               | <50               | <50               |
| 029 - 030 Fraction                           |                 | 50         | ₽9/⊏           | -00               | -50               | -50               | -00               | -00               |

# Page : 4 of 6 Work Order : ES1307073 Client : ACIRL PTY LTD Project : WERRIS CREEK GROUNDWATER 6 MONTHLY



| Sub-Matrix: WATER (Matrix: WATER)       |                | Cli         | ent sample ID   | MW1               | MW2               | MW3               | MW4B              | MW5               |
|-----------------------------------------|----------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                         | Cl             | ient sampli | ing date / time | 25-MAR-2013 10:40 | 25-MAR-2013 11:00 | 25-MAR-2013 12:00 | 25-MAR-2013 12:40 | 25-MAR-2013 12:30 |
| Compound                                | CAS Number     | LOR         | Unit            | ES1307073-001     | ES1307073-002     | ES1307073-003     | ES1307073-004     | ES1307073-005     |
| EP080/071: Total Petroleum Hydrocarbons | s - Continued  |             |                 |                   |                   |                   |                   |                   |
| <sup>^</sup> C10 - C36 Fraction (sum)   |                | 50          | µg/L            | <50               | <50               | <50               | <50               | <50               |
| EP080/071: Total Recoverable Hydrocarbo | ons - NEPM 201 | 0 Draft     |                 |                   |                   |                   |                   |                   |
| >C10 - C16 Fraction                     |                | 100         | µg/L            | <100              | <100              | <100              | <100              | <100              |
| >C16 - C34 Fraction                     |                | 100         | µg/L            | <100              | <100              | <100              | <100              | <100              |
| >C34 - C40 Fraction                     |                | 100         | µg/L            | <100              | <100              | <100              | <100              | <100              |
| >C10 - C40 Fraction (sum)               |                | 100         | µg/L            | <100              | <100              | <100              | <100              | <100              |

# Page : 5 of 6 Work Order : ES1307073 Client : ACIRL PTY LTD Project : WERRIS CREEK GROUNDWATER 6 MONTHLY



| Sub-Matrix: WATER (Matrix: WATER)            |                  | Cl         | ient sample ID   | MW6               | <br> | <br> |
|----------------------------------------------|------------------|------------|------------------|-------------------|------|------|
|                                              | Cl               | ient sampl | ling date / time | 25-MAR-2013 13:00 | <br> | <br> |
| Compound                                     | CAS Number       | LOR        | Unit             | ES1307073-006     | <br> | <br> |
| AC01: Bore Data                              | er te i tu i i e |            |                  |                   |      |      |
| Standing Water Level                         |                  | 0.01       | m                | 12.5              | <br> | <br> |
| AC02: Sampling Data                          | i                |            |                  |                   | 1    |      |
| Purge Type                                   |                  | -          |                  | BAIL              | <br> | <br> |
| AC03: Field Tests                            |                  |            |                  |                   |      |      |
| Electrical Conductivity (Non<br>Compensated) |                  | 1          | μS/cm            | 1750              | <br> | <br> |
| рН                                           |                  | 0.01       | pH Unit          | 7.38              | <br> | <br> |
| Temperature                                  |                  | 0.1        | °C               | 22.4              | <br> | <br> |
| EA005P: pH by PC Titrator                    |                  |            |                  |                   |      |      |
| pH Value                                     |                  | 0.01       | pH Unit          | 7.43              | <br> | <br> |
| EA010P: Conductivity by PC Titrator          |                  |            |                  |                   |      |      |
| Electrical Conductivity @ 25°C               |                  | 1          | µS/cm            | 1870              | <br> | <br> |
| EA015: Total Dissolved Solids                |                  |            |                  |                   |      |      |
| Total Dissolved Solids @180°C                |                  | 10         | mg/L             | 1050              | <br> | <br> |
| EK057G: Nitrite as N by Discrete Analyser    |                  |            |                  |                   |      |      |
| Nitrite as N                                 |                  | 0.01       | mg/L             | <0.01             | <br> | <br> |
| EK058G: Nitrate as N by Discrete Analyser    | r                |            |                  |                   |      |      |
| Nitrate as N                                 | 14797-55-8       | 0.01       | mg/L             | 4.85              | <br> | <br> |
| EK059G: Nitrite plus Nitrate as N (NOx) by   | / Discrete Ana   | lyser      |                  |                   |      |      |
| Nitrite + Nitrate as N                       |                  | 0.01       | mg/L             | 4.85              | <br> | <br> |
| EK061G: Total Kjeldahl Nitrogen By Discre    | te Analyser      |            |                  |                   |      |      |
| Total Kjeldahl Nitrogen as N                 |                  | 0.1        | mg/L             | 1.8               | <br> | <br> |
| EK062G: Total Nitrogen as N (TKN + NOx) I    | by Discrete Ar   | nalyser    |                  |                   |      |      |
| <sup>^</sup> Total Nitrogen as N             |                  | 0.1        | mg/L             | 6.6               | <br> | <br> |
| EK067G: Total Phosphorus as P by Discret     | te Analyser      |            |                  |                   |      |      |
| Total Phosphorus as P                        |                  | 0.01       | mg/L             | 0.14              | <br> | <br> |
| EK071G: Reactive Phosphorus as P by dise     | crete analyser   |            |                  |                   |      |      |
| Reactive Phosphorus as P                     | 14265-44-2       | 0.01       | mg/L             | 0.08              | <br> | <br> |
| EP080/071: Total Petroleum Hydrocarbons      |                  |            |                  |                   |      |      |
| C10 - C14 Fraction                           |                  | 50         | μg/L             | <50               | <br> | <br> |
| C15 - C28 Fraction                           |                  | 100        | μg/L             | <100              | <br> | <br> |
| C29 - C36 Fraction                           |                  | 50         | μg/L             | <50               | <br> | <br> |
| C10 - C36 Fraction (sum)                     |                  | 50         | µg/L             | <50               | <br> | <br> |



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)        |               | Clie         | ent sample ID  | MW6               | <br> | <br> |
|------------------------------------------|---------------|--------------|----------------|-------------------|------|------|
|                                          | Ci            | lient sampli | ng date / time | 25-MAR-2013 13:00 | <br> | <br> |
| Compound                                 | CAS Number    | LOR          | Unit           | ES1307073-006     | <br> | <br> |
| EP080/071: Total Recoverable Hydrocarbor | ns - NEPM 201 | 0 Draft      |                |                   |      |      |
| >C10 - C16 Fraction                      |               | 100          | µg/L           | <100              | <br> | <br> |
| >C16 - C34 Fraction                      |               | 100          | µg/L           | <100              | <br> | <br> |
| >C34 - C40 Fraction                      |               | 100          | µg/L           | <100              | <br> | <br> |
| C10 - C40 Fraction (sum)                 |               | 100          | µg/L           | <100              | <br> | <br> |

# Analytical Results

#### **Descriptive Results**

#### Sub-Matrix: WATER

| Method: Compound         | Client sample ID - Client sampling date / time | Analytical Results |
|--------------------------|------------------------------------------------|--------------------|
| AC04: Field Observations |                                                |                    |
| AC04: Appearance         | MW1 - 25-MAR-2013 10:40                        | CLEAR              |
| AC04: Appearance         | MW2 - 25-MAR-2013 11:00                        | CLEAR              |
| AC04: Appearance         | MW3 - 25-MAR-2013 12:00                        | CLEAR              |
| AC04: Appearance         | MW4B - 25-MAR-2013 12:40                       | CLEAR              |
| AC04: Appearance         | MW5 - 25-MAR-2013 12:30                        | CLEAR              |
| AC04: Appearance         | MW6 - 25-MAR-2013 13:00                        | CLEAR              |
| AC04: Odour              | MW1 - 25-MAR-2013 10:40                        | NIL                |
| AC04: Odour              | MW2 - 25-MAR-2013 11:00                        | NIL                |
| AC04: Odour              | MW3 - 25-MAR-2013 12:00                        | NIL                |
| AC04: Odour              | MW4B - 25-MAR-2013 12:40                       | NIL                |
| AC04: Odour              | MW5 - 25-MAR-2013 12:30                        | NIL                |
| AC04: Odour              | MW6 - 25-MAR-2013 13:00                        | NIL                |
| AC04: Colour             | MW1 - 25-MAR-2013 10:40                        | CLEAR              |
| AC04: Colour             | MW2 - 25-MAR-2013 11:00                        | CLEAR              |
| AC04: Colour             | MW3 - 25-MAR-2013 12:00                        | CLEAR              |
| AC04: Colour             | MW4B - 25-MAR-2013 12:40                       | CLEAR              |
| AC04: Colour             | MW5 - 25-MAR-2013 12:30                        | CLEAR              |
| AC04: Colour             | MW6 - 25-MAR-2013 13:00                        | CLEAR              |

SPECIAL COMMENTS CLIENT: WERRIS CREEK COAL PTY LTD SITE: WERRIS CREEK MINE AND SURROUNDS PROJECT ID: WERRIS CREEK COAL QUARTERLY GROUNDWATERS SAMPLER NAME: ADDRESS/OFFICE: FIELD SAMPLING SHEET - SURFACE & GROUND WATERS Reportables / Analytes Sample ID / Bore ID **MW20** MW29 MW25B MW25A MW27 MW24A MW17B MW14B MW14 MW11 **MW10** MW5B MW4B MW31 PUG 6MW MW6 MW5 MW4 MW2 MW3 MW 1 <u>P</u> P2 26/3/13 253 <u>६७]६ोइन्ह</u>ी 415/50 26/3/13 25313 2531 12 3 13 12 3 13 12 12 23 12 21 2 K 20 ふ 25 3 13 2 21 2 50 sample ID Information Date [willips Ę, 3 14:00 94.01 9 4 o 11:30 54. FO 3 مر تم 12:35 11-20 13.00 06:21 01:0 11100 04:01 111:40 00-20 11 (24hr) Time (Elloanne 15.47 CH-SC 1-5 Part 13.12 16.47 ר גר 10.39 15.13 54.10 19-39 53-6 6.71 Standing Water Level mbtoc Sore Data mbgl m Bore depth 0,35 5 59.0 <u>ه</u> ۲, g 0.55 ç Ç 510 21.0 1.0 1 2.4 095 8-1 0.25 3 Stick up R Bai 5 Pump / Baller Purge Typ Non Con 3 X ß N.a F Purge Volume Ē aduess - vario 402 010055 Stick mbgi mbtoc Pump Sel Deplh ţ OPAC .c. 18 er F anyoyan, Ì 178 bene . , 重 うまん uSlan EC - field mark free ξ いるから ł vo crices 7.76 0226/6 7:38 L'S'I 2.5 35.L 8 1 pH units Field Tests pH - field arest ₹ Side 4.60 4.4C 219 21.8 22.5 QUOTATION No. color ACIRL LABORATORY 3i-Monthly Ground Waters - SWL (Standing Water Level Only) ð 2000 F റ് Temp - field 8 locate 0,0 Chear Choese Clean track S Leav Clear CUERK Appearan e NO #5723 loid Observations N Z 5 2 21 Ŗ N:1 VI て え Odor Cerre 6 Monthly CLEME 6 Monthly Clear 6 Monthly Clear-B Monthly leer 6 Monthly Low to Monthly Colour 4 Cap. Marcingo Tensley win -"Wedell lane - Windenill \* Escit In. - (new the sted Mine Mire Mine ana veran winden to fin Mine Lin ha worken - hered ] 0 Par k Enderte. Perio 1111 JC R Mine Mire, Mire - Pezio Railmay vier Rezio H.11w0~ L'ST р Г И 1.10 lezio 5

<u>ç</u>

Sheet

| FIELD SAMPLING                  | HEEL - SURFAUE &  | GROUND WALERS   |                        | at the second second | ALL HARDEN       | and the second  | un discussion of  | THE REAL PROPERTY OF |             | Sales - Carles - Inc. | ないのであるという       | のないないの            |            | Caller Allocation of the second | Statistics of the local |         |
|---------------------------------|-------------------|-----------------|------------------------|----------------------|------------------|-----------------|-------------------|----------------------|-------------|-----------------------|-----------------|-------------------|------------|---------------------------------|-------------------------|---------|
| CLIENT: WERRIS C                | REEK COAL PTY LTI | 0               |                        |                      | 20               |                 |                   |                      |             | QUOTATION No:         |                 |                   |            |                                 |                         |         |
| ADDRESS/OFFICE:                 |                   |                 |                        |                      |                  |                 |                   |                      |             | ACIRL LABORAT         | rory:           |                   | ,          |                                 |                         |         |
| PROJECT ID: WER                 | IS CREEK COAL QL  | JARTERLY GROUND | WATERS                 | × -                  |                  | *               |                   |                      |             | Bi-Monthly Groun      | Id Waters - SWL | Standing Water L  | evel Only) |                                 | ALS                     |         |
| SAMPLER NAME:                   |                   |                 |                        |                      |                  |                 |                   |                      |             |                       |                 |                   |            |                                 |                         |         |
| SITE: WERRIS CRE                | EK MINE AND SURR  | SUNDS           |                        |                      |                  | -               |                   |                      |             |                       |                 |                   |            |                                 | ACIRL                   |         |
| 50                              | Sample ID Informa | tion            | Bore                   | Data                 | 6                | Sampling Data   |                   |                      | Field Tests |                       |                 | Field Observation |            |                                 | Comments                |         |
| vylian A \ eolda<br>Sample<br>D | sore Date         | Time            | gnibnst2<br>9veJ 1etsW | Stick up             | Purge Type       | Volume<br>Purge | Pump Set<br>Depth | bleñ - OB            | bleñ - Hq   | bleît - qmeT          | hpearance       | Odor              | Colour     |                                 |                         |         |
| stroqeA                         |                   | (24hr)          | ambgl<br>ambtoc<br>am  | btoc m               | Pump /<br>Bailer | _               | □mbgl<br>□mbtoc   | uS/cm                | pH units    | ్ల<br>,               | ,               |                   |            |                                 |                         |         |
| MW8                             | 21/2/970          | 10:00           | 14.10                  | 0                    |                  |                 |                   |                      |             |                       |                 |                   |            | * Rosenell                      |                         |         |
| MW12                            | 26313             | 13,30           | 2.03                   | 0                    | > -              |                 |                   |                      |             |                       |                 |                   |            | * Harzeld                       | Eor                     |         |
| MW13                            | 26 2/13           | 02:01           | 4-40                   | Q-Y                  |                  |                 |                   |                      |             |                       |                 |                   |            | 11 show                         | · licht - ni            | 1       |
| MW13                            | 3 26/3/13         | 10:40           | 3.11                   | 6.0                  |                  |                 | 1                 |                      |             |                       |                 |                   |            |                                 | In - And A.             | 1.1     |
| MW131                           | 26 313            | 10:55           | 4-37                   | 6.0                  |                  | 5-              |                   |                      |             |                       |                 |                   |            | - inter                         | 1                       |         |
| MW15                            | 26 3 13           | 12:00           | 3.92                   | 0.2                  |                  |                 |                   |                      |             | 12/1                  |                 |                   |            | * Parison                       | have Ll. Juil           |         |
| MW16                            | 26 3 3            | 17:50           | 4-37                   | 0.0                  |                  |                 |                   |                      |             |                       |                 |                   |            | * Mark.                         | Vis. el V               | -       |
| MW17/                           | 26/2/20           | 12:15           | 549                    | 0                    |                  |                 |                   |                      |             |                       |                 |                   |            | Le Le                           | 1111                    |         |
| MW18/                           | 26/2/2            | 11:25           | 06-8                   | 7                    |                  |                 |                   |                      |             |                       |                 |                   |            | 83 11                           | Jodell 100              |         |
| MW19/                           | 242/13            | 10:15           | و. لا                  | 0.14                 |                  |                 |                   |                      |             |                       |                 |                   |            | *Lintan                         | A.                      | 1       |
| MW21/                           | 25/3/13           | 5-2:51          | 632                    | 2.0                  |                  |                 |                   |                      | - 3         |                       |                 |                   | -          | * Glow                          | . We                    |         |
| MW22/                           | 26 3 13           | 13:15           | 4.46                   | 0.55                 |                  |                 |                   |                      |             |                       |                 |                   |            | \$ 80%                          | two to - Harry          | 0       |
| MW22E                           | 262               | 13:05           | 463                    | 0.4                  | 2                |                 |                   |                      |             |                       |                 |                   |            | * 306 000                       | and In-Im               | tion.   |
| MW23/                           | 26/3/13           | 05:11           | 3.47                   | 0                    |                  | •               | -                 |                      | 2           |                       | ų               |                   |            | * leg tas                       | 1 - Horse you           | -       |
| MW23E                           | 26 3 13           | 05:11           | 4.04                   | 0:1                  |                  | 22              |                   |                      | * 18        |                       | •               |                   |            | * feel Easy                     | - Inication             |         |
| MW284                           | 36/36/13          | Q'IES           | C.al                   | 54.0                 |                  |                 |                   |                      | A<br>3 .    | 2000                  |                 |                   | 3.         | Woodlad                         | 9- LAS W                | () mill |
| MW28E                           | 21/2/20           | 1               | 1                      | 0-8                  | ŝ.               |                 |                   | 7                    | Pup cal     | aver-                 | 0010            | No SL             | H.         | Warted                          | - LHS RI                | Tot     |
|                                 | il surlo          | cure s          | 51:                    | (11Hie               | sled             |                 |                   |                      |             |                       |                 |                   |            |                                 |                         |         |
|                                 | Nourig            | Nells           | Mare                   | 5                    | r 33             | In la           | Hill we           | outs.                |             |                       |                 |                   |            | Sheet:                          | , C jo                  | 2       |
|                                 |                   |                 |                        |                      |                  | >               | ſ                 |                      | 0           |                       | ŝ.              |                   |            | (                               | 4                       | _       |

# Appendix 7 – Surface Water Monitoring Results





ACIRL Sampling

**Environmental Division** 

|              | CE                              | RTIFICATE OF ANALYSIS   |                                                       |
|--------------|---------------------------------|-------------------------|-------------------------------------------------------|
| Work Order   | ES1305866                       | Page                    | : 1 of 5                                              |
| Client       |                                 | Laboratory              | : Environmental Division Sydney                       |
| Contact      | : A WRIGHT                      | Contact                 | : Client Services                                     |
| Address      | : 5-7                           | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                       |                         |                                                       |
|              | GUNNEDAH NSW 2380               |                         |                                                       |
| E-mail       | : awright@whitehavencoal.com.au | E-mail                  | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                  | Telephone               | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                  | Facsimile               | : +61-2-8784 8500                                     |
| Project      | : WERRIS CREEK SURFACE-WATER    | QC Level                | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 5655                          |                         |                                                       |
| C-O-C number | :                               | Date Samples Received   | : 13-MAR-2013                                         |
| Sampler      | : CE                            | Issue Date              | : 20-MAR-2013                                         |
| Site         | :                               |                         |                                                       |
|              |                                 | No. of samples received | : 9                                                   |
| Quote number | : SY/417/12                     | No. of samples analysed | : 9                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

|     |                                | Ashesh Patel<br>Hoa Nguyen                   | Inorganic Chemist<br>Senior Inorganic Chemist | Sydney Inorganics<br>Sydney Inorganics          |            |
|-----|--------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------|
|     | ISO/IEC 17025.                 | Signatories                                  | Position                                      | Accreditation Category                          |            |
| ΑΤΑ | Accredited for compliance with | carried out in compliance with p             | rocedures specified in 21 CFR Part 11.        |                                                 |            |
|     | NATA Accredited Laboratory 825 | <i>Signatories</i><br>This document has been | electronically signed by the authorized       | signatories indicated below. Electronic signing | , has been |

Sample Receipt Clerk

WORLD RECOGNISED

N

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Kim Phan



**RIGHT SOLUTIONS RIGHT PARTNER** 



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC04: Field observations supplied by ALS ACIRL.

# Page : 3 of 5 Work Order : ES1305866 Client : ACIRL PTY LTD Project : WERRIS CREEK SURFACE-WATER



| Sub-Matrix: WATER (Matrix: WATER)                            |                 | Cli          | ent sample ID   | SB2               | SB6               | SB9               | SB10              | VWD1              |
|--------------------------------------------------------------|-----------------|--------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                              | Cl              | lient sampli | ing date / time | 12-MAR-2013 12:40 | 12-MAR-2013 12:30 | 12-MAR-2013 11:50 | 12-MAR-2013 11:20 | 12-MAR-2013 13:30 |
| Compound                                                     | CAS Number      | LOR          | Unit            | ES1305866-001     | ES1305866-002     | ES1305866-003     | ES1305866-004     | ES1305866-005     |
| AC03: Field Tests                                            |                 |              |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated)                 |                 | 1            | µS/cm           | 387               | 262               | 236               | 201               | 987               |
| pH                                                           |                 | 0.01         | pH Unit         | 9.22              | 8.69              | 8.22              | 8.09              | 8.93              |
| Temperature                                                  |                 | 0.1          | °C              | 24.8              | 26.6              | 25.7              | 24.5              | 25.9              |
| EA005P: pH by PC Titrator                                    |                 |              |                 |                   |                   |                   |                   |                   |
| pH Value                                                     |                 | 0.01         | pH Unit         | 7.64              | 7.69              | 7.53              | 7.64              | 8.10              |
| EA010P: Conductivity by PC Titrator                          |                 |              |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C                               |                 | 1            | µS/cm           | 399               | 265               | 236               | 195               | 1040              |
| EA025: Suspended Solids                                      |                 |              |                 |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                                        |                 | 5            | mg/L            | 24                | 35                | 327               | 168               | 18                |
| EK057G: Nitrite as N by Discrete Analy                       | yser            |              |                 |                   |                   |                   |                   |                   |
| Nitrite as N                                                 |                 | 0.01         | mg/L            | 0.06              | <0.01             | <0.01             | <0.01             | 0.08              |
| EK058G: Nitrate as N by Discrete Anal                        | lyser           |              |                 |                   |                   |                   |                   |                   |
| Nitrate as N                                                 | 14797-55-8      | 0.01         | mg/L            | 1.46              | <0.01             | 1.58              | 0.39              | 2.87              |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser |                 |              |                 |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                                       |                 | 0.01         | mg/L            | 1.52              | <0.01             | 1.58              | 0.39              | 2.95              |
| EK061G: Total Kjeldahl Nitrogen By Di                        | screte Analyser |              |                 |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                                 |                 | 0.1          | mg/L            | 1.6               | 0.7               | 1.8               | 1.2               | 1.7               |
| EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser |                 |              |                 |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N                             |                 | 0.1          | mg/L            | 3.1               | 0.7               | 3.4               | 1.6               | 4.6               |
| EK067G: Total Phosphorus as P by Discrete Analyser           |                 |              |                 |                   |                   |                   |                   |                   |
| Total Phosphorus as P                                        |                 | 0.01         | mg/L            | 0.17              | 0.04              | 0.25              | 0.19              | <0.01             |
| EK071G: Reactive Phosphorus as P by discrete analyser        |                 |              |                 |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                                     |                 | 0.01         | mg/L            | 0.12              | <0.01             | <0.01             | 0.06              | <0.01             |
| EP020: Oil and Grease (O&G)                                  |                 |              |                 |                   |                   |                   |                   |                   |
| Oil & Grease                                                 |                 | 5            | mg/L            | <5                | <5                | <5                | <5                | <5                |



| Sub-Matrix: WATER (Matrix: WATER)                            |                 | Cli   | ent sample ID     | VWD2              | WCD               | 200MLD-NORTH<br>VWD3 | 200MLD-SOUTH<br>VWD4 |  |
|--------------------------------------------------------------|-----------------|-------|-------------------|-------------------|-------------------|----------------------|----------------------|--|
| Client sampling date / time                                  |                 |       | 12-MAR-2013 12:10 | 12-MAR-2013 07:45 | 12-MAR-2013 12:55 | 12-MAR-2013 13:10    |                      |  |
| Compound                                                     | CAS Number      | LOR   | Unit              | ES1305866-006     | ES1305866-007     | ES1305866-008        | ES1305866-009        |  |
| AC03: Field Tests                                            |                 |       |                   |                   |                   |                      |                      |  |
| Electrical Conductivity (Non<br>Compensated)                 |                 | 1     | µS/cm             | 776               | 998               | 989                  | 861                  |  |
| pH                                                           |                 | 0.01  | pH Unit           | 8.54              | 8.37              | 9.33                 | 9.76                 |  |
| Temperature                                                  |                 | 0.1   | °C                | 25.8              | 21.7              | 26.2                 | 25.1                 |  |
| EA005P: pH by PC Titrator                                    |                 |       |                   |                   |                   |                      |                      |  |
| pH Value                                                     |                 | 0.01  | pH Unit           | 8.36              | 8.31              | 8.37                 | 8.44                 |  |
| EA010P: Conductivity by PC Titrator                          |                 |       |                   |                   |                   |                      |                      |  |
| Electrical Conductivity @ 25°C                               |                 | 1     | µS/cm             | 805               | 1030              | 1050                 | 909                  |  |
| EA025: Suspended Solids                                      |                 |       |                   |                   |                   |                      |                      |  |
| Suspended Solids (SS)                                        |                 | 5     | mg/L              | 24                | 24                | 6                    | 14                   |  |
| EK057G: Nitrite as N by Discrete Analyse                     | ə <b>r</b>      |       |                   |                   |                   |                      |                      |  |
| Nitrite as N                                                 |                 | 0.01  | mg/L              | 0.06              | <0.01             | 0.11                 | 0.02                 |  |
| EK058G: Nitrate as N by Discrete Analys                      | er              |       |                   |                   |                   |                      |                      |  |
| Nitrate as N                                                 | 14797-55-8      | 0.01  | mg/L              | 2.44              | <0.01             | 5.33                 | 0.33                 |  |
| EK059G: Nitrite plus Nitrate as N (NOx)                      | by Discrete Ana | lyser |                   |                   |                   |                      |                      |  |
| Nitrite + Nitrate as N                                       |                 | 0.01  | mg/L              | 2.50              | <0.01             | 5.44                 | 0.35                 |  |
| EK061G: Total Kjeldahl Nitrogen By Discr                     | rete Analyser   |       |                   |                   |                   |                      |                      |  |
| Total Kjeldahl Nitrogen as N                                 |                 | 0.1   | mg/L              | 0.9               | 0.5               | 1.6                  | 0.6                  |  |
| EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser |                 |       |                   |                   |                   |                      |                      |  |
| <sup>^</sup> Total Nitrogen as N                             |                 | 0.1   | mg/L              | 3.4               | 0.5               | 7.0                  | 1.0                  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser           |                 |       |                   |                   |                   |                      |                      |  |
| Total Phosphorus as P                                        |                 | 0.01  | mg/L              | 0.01              | 0.23              | <0.01                | 0.01                 |  |
| EK071G: Reactive Phosphorus as P by discrete analyser        |                 |       |                   |                   |                   |                      |                      |  |
| Reactive Phosphorus as P                                     |                 | 0.01  | mg/L              | <0.01             | 0.21              | <0.01                | <0.01                |  |
| EP020: Oil and Grease (O&G)                                  |                 |       |                   |                   |                   |                      |                      |  |
| Oil & Grease                                                 |                 | 5     | mg/L              | <5                | <5                | <5                   | <5                   |  |



# Analytical Results

#### **Descriptive Results**

#### Sub-Matrix: WATER

| Method: Compound         | Client sample ID - Client sampling date / time | Analytical Results |
|--------------------------|------------------------------------------------|--------------------|
| AC04: Field Observations |                                                |                    |
| AC04: Appearance         | SB2 - 12-MAR-2013 12:40                        | CLEAR              |
| AC04: Appearance         | SB6 - 12-MAR-2013 12:30                        | CLEAR              |
| AC04: Appearance         | SB9 - 12-MAR-2013 11:50                        | TURBID             |
| AC04: Appearance         | SB10 - 12-MAR-2013 11:20                       | TURBID             |
| AC04: Appearance         | VWD1 - 12-MAR-2013 13:30                       | CLEAR              |
| AC04: Appearance         | VWD2 - 12-MAR-2013 12:10                       | CLEAR              |
| AC04: Appearance         | WCD - 12-MAR-2013 07:45                        | CLEAR              |
| AC04: Appearance         | 200MLD-NORTHVWD3 - 12-MAR-2013 12:55           | CLEAR              |
| AC04: Appearance         | 200MLD-SOUTHVWD4 - 12-MAR-2013 13:10           | CLEAR              |
| AC04: Odour              | SB2 - 12-MAR-2013 12:40                        | NIL                |
| AC04: Odour              | SB6 - 12-MAR-2013 12:30                        | NIL                |
| AC04: Odour              | SB9 - 12-MAR-2013 11:50                        | NIL                |
| AC04: Odour              | SB10 - 12-MAR-2013 11:20                       | NIL                |
| AC04: Odour              | VWD1 - 12-MAR-2013 13:30                       | NIL                |
| AC04: Odour              | VWD2 - 12-MAR-2013 12:10                       | NIL                |
| AC04: Odour              | WCD - 12-MAR-2013 07:45                        | NIL                |
| AC04: Odour              | 200MLD-NORTHVWD3 - 12-MAR-2013 12:55           | NIL                |
| AC04: Odour              | 200MLD-SOUTHVWD4 - 12-MAR-2013 13:10           | NIL                |
| AC04: Colour             | SB2 - 12-MAR-2013 12:40                        | CLEAR              |
| AC04: Colour             | SB6 - 12-MAR-2013 12:30                        | SLIGHT BROWN       |
| AC04: Colour             | SB9 - 12-MAR-2013 11:50                        | BROWN              |
| AC04: Colour             | SB10 - 12-MAR-2013 11:20                       | BLACK / GREY       |
| AC04: Colour             | VWD1 - 12-MAR-2013 13:30                       | CLEAR              |
| AC04: Colour             | VWD2 - 12-MAR-2013 12:10                       | CLEAR              |
| AC04: Colour             | WCD - 12-MAR-2013 07:45                        | CLEAR              |
| AC04: Colour             | 200MLD-NORTHVWD3 - 12-MAR-2013 12:55           | CLEAR              |
| AC04: Colour             | 200MLD-SOUTHVWD4 - 12-MAR-2013 13:10           | CLEAR              |

# Appendix 8 – Discharge Monitoring Results





**Environmental Division** 

| CERTIFICATE OF ANALYSIS |                                 |                         |                                                       |  |  |
|-------------------------|---------------------------------|-------------------------|-------------------------------------------------------|--|--|
| Work Order              | ES1304444                       | Page                    | : 1 of 3                                              |  |  |
| Client                  |                                 | Laboratory              | : Environmental Division Sydney                       |  |  |
| Contact                 | : A WRIGHT                      | Contact                 | : Client Services                                     |  |  |
| Address                 | : 5-7                           | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |  |  |
|                         | TALBOT RD                       |                         |                                                       |  |  |
|                         | GUNNEDAH NSW 2380               |                         |                                                       |  |  |
| E-mail                  | : awright@whitehavencoal.com.au | E-mail                  | : sydney@alsglobal.com                                |  |  |
| Telephone               | : 02 6742 0058                  | Telephone               | : +61-2-8784 8555                                     |  |  |
| Facsimile               | : 02 6742 0068                  | Facsimile               | : +61-2-8784 8500                                     |  |  |
| Project                 | : WERRIS CREEK GROUNDWATER      | QC Level                | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |  |  |
| Order number            | :                               |                         |                                                       |  |  |
| C-O-C number            | :                               | Date Samples Received   | : 27-FEB-2013                                         |  |  |
| Sampler                 | : ANDREW WRIGHT                 | Issue Date              | : 05-MAR-2013                                         |  |  |
| Site                    |                                 |                         |                                                       |  |  |
|                         |                                 | No. of samples received | : 4                                                   |  |  |
| Quote number            | : SY/417/12                     | No. of samples analysed | : 4                                                   |  |  |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

|                  | NATA Accredited Laboratory 825 | <i>Signatories</i><br>This document has been electronically            | signed by the authorized signatories | indicated below. Electronic signing has been |  |  |  |  |  |
|------------------|--------------------------------|------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|--|--|--|--|--|
| NATA             | Accredited for compliance with | carried out in compliance with procedures specified in 21 CFR Part 11. |                                      |                                              |  |  |  |  |  |
| ISO/IEC 1        | ISO/IEC 17025.                 | Signatories                                                            | Position                             | Accreditation Category                       |  |  |  |  |  |
|                  |                                | Ankit Joshi                                                            | Inorganic Chemist                    | Sydney Inorganics                            |  |  |  |  |  |
|                  |                                | Ashesh Patel                                                           | Inorganic Chemist                    | Sydney Inorganics                            |  |  |  |  |  |
| WORLD RECOGNISED |                                | Hoa Nguyen                                                             | Senior Inorganic Chemist             | Sydney Inorganics                            |  |  |  |  |  |
|                  |                                |                                                                        |                                      |                                              |  |  |  |  |  |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com


#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

# Page : 3 of 3 Work Order : ES1304444 Client : ACIRL PTY LTD Project : WERRIS CREEK GROUNDWATER



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)          |                 | Clie       | ent sample ID  | SB2               | QCU               | QCD               | SB9               |  |  |
|--------------------------------------------|-----------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|--|--|
|                                            | Cli             | ent sampli | ng date / time | 25-FEB-2013 17:30 | 25-FEB-2013 17:45 | 25-FEB-2013 17:55 | 25-FEB-2013 17:15 |  |  |
| Compound                                   | CAS Number      | LOR        | Unit           | ES1304444-001     | ES1304444-002     | ES1304444-003     | ES1304444-004     |  |  |
| EA005P: pH by PC Titrator                  |                 |            |                |                   |                   |                   |                   |  |  |
| pH Value                                   |                 | 0.01       | pH Unit        | 7.97              | 7.65              | 7.87              | 7.28              |  |  |
| EA010P: Conductivity by PC Titrator        |                 |            |                |                   |                   |                   |                   |  |  |
| Electrical Conductivity @ 25°C             |                 | 1          | µS/cm          | 281               | 436               | 774               | 158               |  |  |
| EA025: Suspended Solids                    |                 |            |                |                   |                   |                   |                   |  |  |
| Suspended Solids (SS)                      |                 | 5          | mg/L           | 62                | <5                | 14                | 82                |  |  |
| EK057G: Nitrite as N by Discrete Analyser  |                 |            |                |                   |                   |                   |                   |  |  |
| Nitrite as N                               |                 | 0.01       | mg/L           | <0.01             | <0.01             | <0.01             | <0.01             |  |  |
| EK058G: Nitrate as N by Discrete Analyse   | r               |            |                |                   |                   |                   |                   |  |  |
| Nitrate as N                               | 14797-55-8      | 0.01       | mg/L           | <0.01             | 0.02              | 0.08              | 0.33              |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by | / Discrete Anal | yser       |                |                   |                   |                   |                   |  |  |
| Nitrite + Nitrate as N                     |                 | 0.01       | mg/L           | <0.01             | 0.02              | 0.08              | 0.33              |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discre  | te Analyser     |            |                |                   |                   |                   |                   |  |  |
| Total Kjeldahl Nitrogen as N               |                 | 0.1        | mg/L           | 1.0               | 0.6               | 0.3               | 1.7               |  |  |
| EK062G: Total Nitrogen as N (TKN + NOx)    | by Discrete An  | alyser     |                |                   |                   |                   |                   |  |  |
| <sup>^</sup> Total Nitrogen as N           |                 | 0.1        | mg/L           | 1.0               | 0.6               | 0.4               | 2.0               |  |  |
| EK067G: Total Phosphorus as P by Discret   | te Analyser     |            |                |                   |                   |                   |                   |  |  |
| Total Phosphorus as P                      |                 | 0.01       | mg/L           | 0.33              | 0.14              | 0.16              | 0.04              |  |  |
| EK071G: Reactive Phosphorus as P by dis    | crete analyser  |            |                |                   |                   |                   |                   |  |  |
| Reactive Phosphorus as P                   |                 | 0.01       | mg/L           | 0.14              | 0.03              | 0.10              | <0.01             |  |  |
| EP020: Oil and Grease (O&G)                |                 |            |                |                   |                   |                   |                   |  |  |
| Oil & Grease                               |                 | 5          | mg/L           | <5                | <5                | <5                | <5                |  |  |

### Werris Creek Coal Community Consultative Committee

### <u>Twenty Eighth Meeting of the Committee</u> <u>Training Room, Werris Creek Coal</u> <u>9:30am Thursday 29<sup>th</sup> August 2013</u> <u>MINUTES</u>

Werris Creek Coal (WCC) Community Consultative Committee (CCC) met at 9:30am and had a pit tour of the mine site prior to the meeting. The feedback from the site tour was positive with the CCC inspecting the rehabilitation, overburden emplacement, eastern lookout in pit, new mine infrastructure area and train load out facility.

### 1. Record of Attendance:

Present: Gae Swain (Independent Chairperson); Noel Taylor (Community Representative); Geoff Dunn (Community Representative); Jill Coleman (Community Representative); Col Stewart (Liverpool Plains Shire Council - Councilor); Ron Van Katwyk (Liverpool Plains Shire Council – Director Environmental Services); Peter Easey (WCC Operations Manager) and Andrew Wright (WCC Environmental Officer and Minute Taker).

Apologies: Lindsay Bridge (Community Representative) and Roslyn Marr (Resigned as a Community Representative).

### 2. Declaration of Pecuniary or Other Interests

Noel Taylor declared that his son works for Werris Creek Coal.

#### 3. New Matters for Discussion under General Business

WCC Hazard Reduction Burns at "Marengo" property. Update on communication between a complainant and CCC chairperson.

#### 4. Matters Arising

#### a) Actions from Previous Meeting

None.

b) Other Matters Arising

None.

### 5. Minutes of Previous Meeting

Minutes of the previous meeting on the 30<sup>th</sup> June 2013 were accepted as true and accurate representation of business conducted on that day.

Moved: Col Stewart. Seconded: Ron Van Katwyk. Motion carried.

### 6. Environmental Monitoring Report: May, June and July 2013

**Meteorology** – June was a wet month with 87mm of rain falling but the period was otherwise dry and the prevailing autumn wind direction shifted from a south easterly to a winter north westerly wind.

**Air Quality** – All PM10 and PM2.5 dust results were below or consistent with the annual average for each site and well below the annual average criteria indicating good air quality. All dust deposition gauge annual averages were below the annual criteria of 4.0g/m<sup>2</sup>/month except for the dust gauge at 8 Kurrara St for May and June 2013. The elevated May and June results for 8 Kurrara St were likely to have been contaminated with dust from another source other than mining as the two other Werris Creek dust gauges both recorded results less than 1g/m<sup>2</sup>/month for the same period. A couple of results were contaminated with organic matter (>50%) which is not representative of mining dust emissions. There were three dust complaints received all during July 2013 from Werris Creek residents. Two complaints were related to general dust levels, and one complaint was for a specific event on 15<sup>th</sup> July 2013. On each occasion, the real time PM10 dust levels in Werris Creek were well below the 30µg/m<sup>3</sup> criteria indicating good air quality.

**Noise** – There were three noise exceedances recorded during July 2013. Attended noise monitoring was undertaken on Thursday 11<sup>th</sup> July 2013 recording 39dB(A) at Gedhurst (R9) and Mountain View (R22) which is +2/+3dBA respectively over the criteria; and Rosehill (R5) recorded 36dB(A) which is only +1dBA over criteria. The EPA has responded acknowledging the good record since October 2010 and that this event did not require any further action at this time. There were five noise complaints during the period; one related to open cut operations and four related to train noise. The investigation into the four train noise complaints found in every occasion that the main noise source was due to passing trains or activities within the Werris Creek rail yard which is unrelated to WCC operations. The noise complaint related to mining operations occurred on 17<sup>th</sup> May 2013 in the mid morning when there was a rail outage. The complainant indicated without the train noise, the mine was particularly noticeable. While audible, a review of the continuous noise monitoring results found that mining noise levels were within compliance.

Blasting - During the period a total of 19 blasts were fired with two blasts resulting in overpressure levels greater than 115dB(L) at "Talavera" (1<sup>st</sup> May 2013), Werris Creek (8<sup>th</sup> July 2013) and "Tonsley Park" (8th July 2013). The blast on the 1st May 2013 recorded 115.8dB(L) at "Talavera" due to an underground collapse shot allowing energy to escape into the atmosphere via broken ground created from a previously fired presplit blast. WCC will not fire presplit blasts ahead of any underground blasts into the future. On 8<sup>th</sup> July 2013, elevated overpressure recorded 119.0dB(L) at Werris Creek and 121.0dB(L) at "Tonsley Park" due to the ejection of energy from the old underground bore and general rifling in the weathered material at natural surface. The "Tonsley Park" result was not an exceedance due to Whitehaven Coal acquiring the property in November 2012. The blast design protocol was reviewed following this blast to include triggers for identifying any existing holes within a shot to be filled with stemming and the stemming height in this weathered material to be increased from 4m to 5m to improve confinement. There were twenty blast complaints during the period from five separate blast events. The increase in blasting complaints is believed to be due the sensitization of the Werris Creek community due the elevated overpressure from the blast on 8<sup>th</sup> July 2013 receiving 11 community complaints. In addition, WCC have recently increased the volume and size of blasts to produce enough inventory to maintain operational continuity of the new Excavator EX5600 required by WCC to achieve the budgeted 2.5Mt production rate for 2013-2014. To prevent the continued escalation of blasting complaints, WCC and Orica have improved the cross communication and signoff process as well as developed blast design protocols to establish maximum parameters to minimize the potential for complaints from either overpressure or vibration generated by the larger shots.

**Groundwater** – All groundwater levels are within longer term averages and the Site Water Management Plan trigger values.

**Surface Water** – All onsite and offsite water quality is consistent with longer term averages and within the site water management plan trigger values.

**Surface Water Discharges** – The June 2013 dirty water discharge was in compliance with WCC's Environmental Protection Licence 12290 and there were no impacts on water quality monitored in Quipolly and Werris Creeks' catchments as a result of the dirty water discharge event.

**Complaints** – There were thirty five complaints received during the period. There were twenty complaints related to blasting; five complaints relating to noise; four complaints related to lights; three complaints related to dust and three other complaints. There were nineteen different complainants during the period with thirty two complaints from Werris Creek residents and three complaints from Quipolly residents.

Motion moved to accept the Environmental Monitoring Report for May, June and July 2013.

Moved: Col Stewart. Seconded: Jill Coleman. Motion Carried.

### 7. General Business

### a. Community Enhancement Fund (CEF) Update

The lift at the Werris Creek Railway Museum and fire early warning system should be installed and operational by the end of October 2013. A comment from the committee was that notices should be placed in the Werris Creek Flyer and newspaper advising that this project was funded and supported by WCC and Council.

### b. Hazard Reduction Burns at "Marengo" Property

Noel Taylor enquired about the purpose of the burns at the "Marengo" property. Andrew Wright responded stating the controlled burns were for strategic hazard reduction to create a fire break between neighboring properties. The controlled burns were in accordance with the WCC Biodiversity and Offset Management Plan to manage fuel loads and trigger native plant restoration in the absence of grazing.

### c. Communication between a complainant and CCC chairperson

Gae Swain indicated that she was in contact with a regular complainant of WCC regarding the impacts that she alleges to have occurred to her and her property.

### d. Resignation of Roslyn Marr as Community Representative

Roslyn Marr emailed her resignation as a Community Representative of the CCC on 26<sup>th</sup> August 2013. Andrew Wright advised that the CCC needed to have between three and five community representatives, even with the vacancy there is currently four community representatives.

Motion moved to hold over the decision to the next meeting whether to advertise the CCC community representative vacancy.

Moved: Ron Van Katwyk. Seconded: Geoff Dunn. Motion Carried.

#### Meeting Closed 11:00pm.

Next Meeting scheduled for Thursday 21<sup>st</sup> November 2013.

**Copy to:** Gae Swain Jill Coleman Noel Taylor Lindsay Bridge Roslyn Marr Geoff Dunn

Ron Van Katwyk Cr Col Stewart Stephen O'Donoghue Simon Lund Lindsay Fulloon

Independent Chairperson Community Representative Community Representative Community Representative Community Representative Community Representative

LPSC LPSC DoPl DRE EPA

Peter Easey Danny Young Andrew Wright Werris Creek Coal Whitehaven Coal Werris Creek Coal



### WERRIS CREEK COAL PTY LTD

### **QUARTERLY ENVIRONMENTAL MONITORING**

### REPORT

### May, June and July 2013

This Environmental Monitoring Report covers the period 1<sup>st</sup> May 2013 to 31<sup>st</sup> July 2013 for the Werris Creek No.2 Coal Mine Community Consultative Committee.

The report includes environmental monitoring results from the on-site Weather Station, Air Quality, Noise, Blasting, Surface Water, Groundwater and Discharge Water Quality together with any community complaints received and general details on site environmental matters.

**Note:** Monitoring results with any non compliance of monitoring criteria are highlighted in yellow.

### CONTENTS

| 1.1       WEATHER STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0   | METEOROLOGY                                | .3  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------|-----|
| 2.0       AIR QUALITY       3         2.1       HVAS (PM10) and TEOM (PM10).       3         2.1.1       Monitoring Data Results       3         2.1.2       Discussion - Compliance / Non Compliance       4         2.2       WERRIS CREEK MINE DEPOSITED DUST.       4         2.2       WERRIS CREEK MINE DEPOSITED DUST.       4         2.2       WERRIS CREEK MINE DEPOSITION DUST.       4         2.2.1       Monitoring Data Results       4         2.2       Discussion - Compliance / Non Compliance       4         2.2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance                                                               | 1.1   | WEATHER STATION                            | . 3 |
| 2.1       HVAS (PM10) and TEOM (PM10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0   | AIR QUALITY                                | .3  |
| 2.1.1       Monitoring Data Results       3         2.1.2       Discussion - Compliance / Non Compliance       4         2.2       WERRIS CREEK MINE DEPOSITED DUST.       4         2.2.1       Monitoring Data Results       4         2.2.2       Discussion - Compliance / Non Compliance       4         2.3.1       Monitoring Data Results       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST       7         4.1.1       Monitoring Data Results       7         4.2       NON Compliance / Non Compliance       8         5.0       WATER       7         4.1       BLAST       7         4.1.1       Monitoring Data Results       7         4.2       BLAST COMPLAINTS </th <td>2.1</td> <td>HVAS (PM10) and TEOM (PM10).</td> <td>. 3</td>                                 | 2.1   | HVAS (PM10) and TEOM (PM10).               | . 3 |
| 2.1.2       Discussion - Compliance / Non Compliance       4         2.2       WERRIS CREEK MINE DEPOSITED DUST       4         2.2.1       Monitoring Data Results       4         2.2.2       Discussion - Compliance / Non Compliance       4         2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1       OPERATIONAL NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.1       BLAST       7         4.1       BLAST MONITORING       7         4.2       BLAST COMPLAINTS       8         5.1       GROUND WATER       8         5.1       GROUND WATER       8         5.1       GROUND WATER       9         5.2       SURFACE WATER       9 <td>2.1.1</td> <td>Monitoring Data Results</td> <td>. 3</td>                                                   | 2.1.1 | Monitoring Data Results                    | . 3 |
| 2.2       WERRIS CREEK MINE DEPOSITED DUST.       4         2.2.1       Monitoring Data Results       4         2.2.2       Discussion - Compliance / Non Compliance       4         2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         3.1       OPERATIONAL NOISE       5         3.1       OPERATIONAL NOISE       5         3.1       OPERATIONAL NOISE       6         3.1.2       Discussion - Compliance / Non Compliance       7         4.0       BLAST       7         4.1       BLAST       7         4.1       BLAST       7         4.1       Monitoring Data Results       7         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1       GROUND WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER                                                                                                              | 2.1.2 | Discussion - Compliance / Non Compliance   | . 4 |
| 22.1       Monitoring Data Results       4         2.2       Discussion - Compliance / Non Compliance       4         2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST       7         4.2       BLAST COMPLAINTS       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.3       SURFACE WATER                                                                                                              | 2.2   | WERRIS CREEK MINE DEPOSITED DUST           | . 4 |
| 2.2.2       Discussion - Compliance / Non Compliance       4         2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1       Monitoring Data Results       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2                                                                                                           | 2.2.1 | Monitoring Data Results                    | . 4 |
| 2.3       QUIRINDI TRAIN DUST DEPOSITION       5         2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST       7         4.1       Monitoring Data Results       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.3 <td>2.2.2</td> <td>Discussion - Compliance / Non Compliance</td> <td>. 4</td>                 | 2.2.2 | Discussion - Compliance / Non Compliance   | . 4 |
| 2.3.1       Monitoring Data Results       5         2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1.1       Monitoring Data Results       7         4.2       BLAST COMPLAINTS       8         5.1.2       Discussion - Compliance / Non Compliance       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9 <t< th=""><td>2.3</td><td>QUIRINDI TRAIN DUST DEPOSITION</td><td>. 5</td></t<>        | 2.3   | QUIRINDI TRAIN DUST DEPOSITION             | . 5 |
| 2.3.2       Discussion - Compliance / Non Compliance       5         2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       9         5.3.1       Monitoring Data Results       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       9         5.3.1       Mo                                                                                                    | 2.3.1 | Monitoring Data Results                    | . 5 |
| 2.4       AIR QUALITY COMPLAINTS       5         3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       9         5.2.1       Monitoring Data Results       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compli                                                                                                    | 2.3.2 | Discussion - Compliance / Non Compliance   | . 5 |
| 3.0       NOISE       5         3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       9         5.3.2                                                                                           | 2.4   | AIR QUALITY COMPLAINTS                     | . 5 |
| 3.1       OPERATIONAL NOISE       5         3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.3       SURFACE WATER       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       10         5.3 <td>3.0</td> <td>NOISE</td> <td>.5</td>                                                       | 3.0   | NOISE                                      | .5  |
| 3.1.1       Monitoring Data Results       6         3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.3       SURFACE WATER DISCHARGES       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       <                                                             | 3.1   | OPERATIONAL NOISE                          | . 5 |
| 3.1.2       Discussion - Compliance / Non Compliance       7         3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       10         5.3       WATER COMPLAINTS       10 </th <td>3.1.1</td> <td>Monitoring Data Results</td> <td>. 6</td> | 3.1.1 | Monitoring Data Results                    | . 6 |
| 3.2       NOISE COMPLAINTS       7         4.0       BLAST       7         4.1       BLAST MONITORING       7         4.1.1       Monitoring Data Results       7         4.1.2       Discussion - Compliance / Non Compliance       8         4.2       BLAST COMPLAINTS       8         5.0       WATER       8         5.1       GROUND WATER       8         5.1.1       Monitoring Data Results       8         5.1.2       Discussion - Compliance / Non Compliance       9         5.2       SURFACE WATER       9         5.2.1       Monitoring Data Results       9         5.2.2       Discussion - Compliance / Non Compliance       9         5.3       SURFACE WATER DISCHARGES       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       9         5.3.1       Monitoring Data Results       9         5.3.2       Discussion - Compliance / Non Compliance       10         5.3       WATER COMPLAINTS       10         6.0       COMPLAINTS SUMMARY       10         7.0       GENERAL       12                                                                                                                                         | 3.1.2 | 2 Discussion - Compliance / Non Compliance | . 7 |
| 4.0BLAST74.1BLAST MONITORING74.1.1Monitoring Data Results74.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.2   | NOISE COMPLAINTS                           | . 7 |
| 4.1BLAST MONITORING74.1.1Monitoring Data Results74.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0   | BLAST                                      | .7  |
| 4.1.1Monitoring Data Results74.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1   | BLAST MONITORING                           | . 7 |
| 4.1.2Discussion - Compliance / Non Compliance84.2BLAST COMPLAINTS85.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.1.1 | Monitoring Data Results                    | . 7 |
| 4.2BLAST COMPLAINTS8 <b>5.0WATER</b> 85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1.2 | 2 Discussion - Compliance / Non Compliance | . 8 |
| 5.0WATER85.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3SURFACE WATER DISCHARGES105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.2   | BLAST COMPLAINTS                           | . 8 |
| 5.1GROUND WATER85.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0   | WATER                                      | .8  |
| 5.1.1Monitoring Data Results85.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1   | GROUND WATER                               | . 8 |
| 5.1.2Discussion - Compliance / Non Compliance95.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1.1 | Monitoring Data Results                    | . 8 |
| 5.2SURFACE WATER95.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.1.2 | 2 Discussion - Compliance / Non Compliance | . 9 |
| 5.2.1Monitoring Data Results95.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.2   | SURFACE WATER                              | . 9 |
| 5.2.2Discussion - Compliance / Non Compliance95.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2.1 | Monitoring Data Results                    | . 9 |
| 5.3SURFACE WATER DISCHARGES95.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.2.2 | 2 Discussion - Compliance / Non Compliance | . 9 |
| 5.3.1Monitoring Data Results95.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.3   | SURFACE WATER DISCHARGES                   | . 9 |
| 5.3.2Discussion - Compliance / Non Compliance105.3WATER COMPLAINTS106.0COMPLAINTS SUMMARY107.0GENERAL12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.3.1 | Monitoring Data Results                    | .9  |
| 5.3       WATER COMPLAINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.3.2 | Discussion - Compliance / Non Compliance   | 10  |
| 6.0         COMPLAINTS SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.3   | WATER COMPLAINTS                           | 10  |
| 7.0 GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.0   |                                            | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.0   | GENERAL                                    | 12  |

### **APPENDICES**

| Appendix 1 | .Dust Monitoring Results - PM10 and PM2.5 |
|------------|-------------------------------------------|
| Appendix 2 | Dust Monitoring Results – Deposited Dust  |
| Appendix 3 | Train Dust Deposition Monitoring          |
| Appendix 4 | .Noise Monitoring Results                 |
| Appendix 5 | . Blasting Monitoring Results             |
| Appendix 6 | Groundwater Monitoring Results            |
| Appendix 7 | . Surface Water Monitoring Results        |
| Appendix 8 | Discharge Monitoring Results              |

### 1.0 METEOROLOGY

### 1.1 WEATHER STATION

Werris Creek Coal (WCC) collects meteorological data from the onsite weather station located on the top level of the overburden emplacement and from the continuous noise monitoring units located at Quipolly and Werris Creek. The following table summarises temperature, inversion and rainfall data for the last three months and wind data is presented below in windroses. June was a wet month with 87mm of rain falling and the prevailing autumn wind direction shifting from a south easterly to winter north westerly wind.

| Month     | Q<br>Te | uipol<br>mp (' | ly<br>C) | Wei<br>Te | rris C<br>emp ( | Creek<br>(°C) | <b>W</b> (<br>(° | CC T<br>C) 10 | emp<br>)m | Lapse Rate<br>(°C/100m) |      |        | Rainfall (mm) |      | m)      |
|-----------|---------|----------------|----------|-----------|-----------------|---------------|------------------|---------------|-----------|-------------------------|------|--------|---------------|------|---------|
|           | Min     | Avg            | Max      | Min       | Avg             | Max           | Min              | Avg           | Max       | Avg                     | 90%  | Onsite | Quip          | WC   | Annual* |
| May 2013  | -1.9    | 11.5           | 26.0     | 1.1       | 13.8            | 26.0          | 0.0              | 13.8          | 25.2      | +1.7                    | +7.8 | 29.1   | 20.9          | 14.0 | 29.9    |
| June 2013 | -2.4    | 9.5            | 21.3     | 1.3       | 11.1            | 21.1          | 2.9              | 11.3          | 20.0      | +1.1                    | +6.1 | 87.4   | 38.4          | 61.2 | 117.3   |
| July 2013 | -4.2    | 9.0            | 19.7     | -0.6      | 11.5            | 20.2          | 2.6              | 11.8          | 19.7      | 0.0                     | +8.3 | 39.2   | 22.0          | 25.6 | 156.5   |

\* Annual cumulative total since July 2012 to June 2013 from a composite data set based on the onsite Weather Station at WCC.



### 2.0 AIR QUALITY

### 2.1 HVAS (PM10) and TEOM (PM10 & PM2.5)

WCC operates five High Volume Air Sampler (HVAS) measuring particulate matter less than 10 micron (PM10) and total suspended particulate (TSP) matter at the four sites. HVAS sampling is scheduled for 24 hours every 6 days in accordance with Environment Protection Authority (EPA) guidelines and results are reported as micro grams per cubic metre ( $\mu$ g/m<sup>3</sup>) of air sampled. In addition, WCC operates a Tapered Element Oscillating Microbalance (TEOM) monitor in Werris Creek measuring real time PM10 and PM2.5 (particulate matter less than 2.5 micron) dust levels.

PM2.5 – TEOM92 "Werris Creek" PM10 – TEOM92 "Werris Creek" PM10 – HVP20 "Tonsley Park" PM10 – HVP1 "Escott" PM10 – HVP20 "Glenara" PM10 – HVP98 "Kyooma" TSP – HVT98 "Kyooma"

### 2.1.1 Monitoring Data Results

The average results for the last three months are provided in the table below; however see HVAS/TEOM monitoring data under **Appendix 1** for individual results.

| Moniton Logation                          | May 2013      | June 2013     | July 2013     | 2012-2013                    | Criteria | $(\mu g/m^3)$ |
|-------------------------------------------|---------------|---------------|---------------|------------------------------|----------|---------------|
| Monitor Location                          | $(\mu g/m^3)$ | $(\mu g/m^3)$ | $(\mu g/m^3)$ | Average (µg/m <sup>3</sup> ) | Annual   | Daily         |
| PM2.5 – TEOM92<br>"Werris Creek"          | 6.7           | 6.4           | 6.4           | 6.4                          | 8        | 25            |
| PM10 – TEOM92<br>"Werris Creek"           | 11.9          | 9.0           | 9.3           | 10.6                         | 30       | 50            |
| PM10 – HVP20 "Tonsley<br>Park"            | 15.4          | 7.7           | 11.9          | 12.3                         | 30       | 50            |
| PM10 - HVP4/HVP1<br>"Eurunderee"/"Escott" | 9.5           | 4.0           | 5.7           | 6.9                          | 30       | 50            |
| PM10 – HVP20<br>"Glenara"                 | 17.6          | 5.6           | 5.5           | 11.3                         | 30       | 50            |
| PM10 – HVP98<br>"Kyooma"                  | 11.8          | 3.4           | 3.8           | 6.5                          | 30       | 50            |
| TSP – HVT98 "Kyooma"                      | 35.8          | 6.4           | 6.7           | 16.5                         | 90       | -             |

### 2.1.2 Discussion - Compliance / Non Compliance

All PM10 and PM2.5 dust results were below or consistent with the annual average for each site and well below the annual average criteria indicating good air quality. There were no exceedances of the daily maximum criteria recorded for the period.

#### WERRIS CREEK MINE DEPOSITED DUST 2.2

Deposited dust monitoring measures particulate matter greater than 30 micron in size that readily settles out of the air related to visual impact. Dust deposition is monitored at 20 locations around WCC. Sampling is scheduled monthly in accordance with EPA guidelines and results are reported as grams per metre squared per month ( $g/m^2/month$ ).

### 2.2.1 Monitoring Data Results

The results for the last three months are provided in the table below; however Appendix 2 has more information on Deposited Dust Monitoring Results.

| Monitor<br>Location | May 2013<br>(g/m <sup>2</sup> /month) | June 2013<br>(g/m <sup>2</sup> /month) | July 2013<br>(g/m <sup>2</sup> /month) | 2012-2013<br>Average<br>(g/m <sup>2</sup> /month) | Annual<br>Criteria<br>(g/m <sup>2</sup> /month) |
|---------------------|---------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------------|
| "Cintra"            | 1.5                                   | 1.3                                    | 1.2                                    | 2.0                                               | 4.0                                             |
| "Railway View"      | 1.0                                   | 0.9                                    | 0.8                                    | 0.9                                               | 4.0                                             |
| "Tonsley Park"      | 0.6                                   | 0.4                                    | 0.6                                    | 0.7                                               | 4.0                                             |
| "Plain View"        | 1.0                                   | 1.2                                    | 0.8                                    | 1.4                                               | 4.0                                             |
| "Marengo"           | *0.8                                  | 0.3                                    | 0.4                                    | 0.7                                               | 4.0                                             |
| "Mountain View"     | 0.8                                   | 1.5                                    | 0.5                                    | 0.9                                               | 4.0                                             |
| "Glenara"           | 0.2                                   | 0.2                                    | 0.1                                    | 0.2                                               | 4.0                                             |
| "Hazeldene"         | 0.5                                   | 0.4                                    | 0.3                                    | 0.5                                               | 4.0                                             |
| "Woodlands"         | 0.7                                   | 0.4                                    | 0.4                                    | 0.6                                               | 4.0                                             |
| "Talavera"          | 0.4                                   | 0.2                                    | 0.2                                    | 0.4                                               | 4.0                                             |
| "Kyooma"            | 0.2                                   | 0.1                                    | 0.2                                    | 0.2                                               | 4.0                                             |
| "Greenslopes"       | 0.3                                   | 0.3                                    | 0.3                                    | 0.3                                               | 4.0                                             |
| Werris Creek South  | 0.3                                   | 0.2                                    | *0.9                                   | 0.4                                               | 4.0                                             |
| Werris Creek Centre | 0.8                                   | 0.3                                    | 0.3                                    | 0.5                                               | 4.0                                             |
| "Westfall"          | 0.5                                   | 0.4                                    | 0.5                                    | 0.7                                               | 4.0                                             |
| West Street         | 0.5                                   | 0.3                                    | 0.7                                    | 0.6                                               | 4.0                                             |
| "Escott"            | 0.2                                   | 1.6                                    | 0.4                                    | 1.2                                               | 4.0                                             |
| "Eurunderee"        | 0.6                                   | 0.7                                    | 0.7                                    | 0.7                                               | 4.0                                             |
| 8 Kurrara St        | c6.2                                  | c54.1                                  | 0.4                                    | 18.6                                              | 4.0                                             |
| "Willomogno"        | 0.4                                   | 0.4                                    | *0.3                                   | 0.5                                               | 4.0                                             |

\* - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e. bird droppings and insects); c - indicates sample is contaminated from a Non-Werris Creek Coal dust source.

### 2.2.2 Discussion - Compliance / Non Compliance

All dust deposition gauge annual averages were below the annual criteria of 4.0g/m<sup>2</sup>/month except for the dust gauge at 8 Kurrara St for May and June 2013. The elevated May and June results for 8 Kurrara St were likely to have been contaminated with dust from another source other than mining as the two other Werris Creek dust gauges both recorded results less than 1g/m<sup>2</sup>/month for the same period. A couple of results were contaminated with organic matter (>50%) which is not representative of mining dust emissions.

### 2.3 QUIRINDI TRAIN DUST DEPOSITION

### 2.3.1 Monitoring Data Results

The results for the last three months are provided in the table below; however **Appendix 3** has more information on the Train Dust Monitoring Results.

| Monitor  | May 20                  | 013    | June 2                  | 013    | July 20                 | Annual |                           |
|----------|-------------------------|--------|-------------------------|--------|-------------------------|--------|---------------------------|
| Location | g/m <sup>2</sup> /month | % Coal | g/m <sup>2</sup> /month | % Coal | g/m <sup>2</sup> /month | % Coal | (g/m <sup>2</sup> /month) |
| DDW30    | 1.4                     | <1%    | 1.4                     | <1%    | 1.0                     | 30%    | 1.1                       |
| DDW20    | 0.7                     | <1%    | 0.7                     | <1%    | 1.2                     | 25%    | 0.7                       |
| DDW13    | 0.5                     | 10%    | -                       | -      | 0.9                     | 30%    | 0.7                       |
|          |                         |        | Trai                    | n Line |                         |        |                           |
| DDE13    | 0.6                     | <1%    | -                       | -      | 0.8                     | 20%    | 0.8                       |
| DDE20    | 0.9                     | <1%    | 0.9                     | <1%    | 1.7                     | 20%    | 1.0                       |
| DDE30    | 0.6                     | <1%    | 0.6                     | <1%    | 1.6                     | 10%    | 0.9                       |

### 2.3.2 Discussion - Compliance / Non Compliance

Overall the dust fall out levels adjacent to the train line are low (well below the impact assessment criteria nominated by the EPA of 4.0 g/m<sup>2</sup>/month) and comparable to the levels monitored around WCC. Results collected for DDW13 and DDE13 in June 2013 were not reported due to both sample bottles being labeled DDE13.

### 2.4 AIR QUALITY COMPLAINTS

There were three dust complaints were received all during July 2013 from Werris Creek residents. Two complaints were related to general dust levels, and one complaint was for a specific event on  $15^{th}$  July 2013. On each occasion, the real time PM10 dust levels in Werris Creek were well below the  $30\mu g/m^3$  criteria indicating good air quality. Specific actions taken in relation to each of these complaints are outlined in **Section 6.** 

### 3.0 NOISE

### 3.1 OPERATIONAL NOISE

Monthly attended noise monitoring is undertaken representative of the following 17 properties from 13 monitoring points below. Attended noise monitoring was undertaken twice for either 60 minutes at privately owned properties or 15 minutes at properties with private agreements; representative of the day period and the evening/night period.

- A "Rosehill" R5;
- o B1 "Almawille" (private agreement) R8;
- o B1 83 Wadwells Lane R7;
- o B2 "Mountain View" R22;
- o B2 "Gedhurst" R9;
- o C "Meadholme" (private agreement) R10;
- C "Glenara" (private agreement) R11;
- o D "Hazeldene" R24;
- o E "Railway Cottage" R12;
- o F "Talavera" R96;
- o **G R97**;
- H "Kyooma" (private agreement) R98;
- o I Kurrara St, Werris Creek;
- o J Coronation Ave, Werris Creek;
- K "Tonsley Park" (private agreement) R20;
- o K "Alco Park" (private agreement) R21; and
- o L R103.

### 3.1.1 Monitoring Data Results

The WCC operations only noise level (not ambient noise) results for the last three months are outlined below; however see Monthly Noise Monitoring Reports under **Appendix 4** for more detail.

| Tuesday | 14 <sup>th</sup> | May | 2013 |  |
|---------|------------------|-----|------|--|
|---------|------------------|-----|------|--|

|    | T                           | Day dB(A)             | Criteria dB(A)        | <b>Evening/Night</b>        | Criteria dB(A)        |
|----|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
|    | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| Α  | "Rosehill" R5               | Inaudible#            | 35                    | Inaudible                   | 35                    |
| B1 | West Quipolly R7, R8*       | Inaudible#            | 37                    | Barely audible              | 37                    |
| B2 | West Quipolly R9 & R22      | Barely audible#       | 37/36 <sup>1</sup>    | Inaudible                   | 37/36 <sup>1</sup>    |
| С  | Central Quipolly R10*, R11* | Barely audible#       | 39                    | Inaudible                   | 39                    |
| D  | "Hazeldene" R24             | Barely audible#       | 37                    | Barely audible#             | 37                    |
| E  | "Railway Cottage" R12       | Inaudible#            | 38                    | 27#                         | 38                    |
| F  | "Talavera" R96              | 34#                   | 38                    | 34#                         | 37                    |
| G  | R97                         | 34#                   | 35                    | 30#                         | 35                    |
| Η  | "Kyooma" R98*               | 33#                   | 36                    | 36#                         | 36                    |
| Ι  | Kurrara St, WC              | Inaudible#            | 35                    | 32#                         | 35                    |
| J  | Coronation Ave, WC          | Inaudible#            | 35                    | 32                          | 35                    |
| K  | South St, WC R21*           | Inaudible#            | 39                    | 27#                         | 37                    |
| L  | West St, WC R103            | Inaudible#            | 35                    | 27#                         | 35                    |

WC – Werris Creek; \* - Private agreement in place with resident; Yellow Bold – Elevated noise; # Adverse weather with wind >3m/s, temperature inversions >+12°C/100m or >2m/s and >0°C/100m; 1 – R22 criteria is 36 dB(A) L<sub>eq 15min</sub> while R9 is 37 dB(A) L<sub>eq 15min</sub>

### Wednesday 19<sup>th</sup> June 2013

|    | Location                    | Day dB(A)             | Criteria dB(A)        | <b>Evening/Night</b>        | Criteria dB(A)        |
|----|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
|    | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| Α  | "Rosehill" R5               | Inaudible#            | 35                    | Inaudible                   | 35                    |
| B1 | West Quipolly R7, R8*       | Inaudible#            | 37                    | Inaudible                   | 37                    |
| B2 | West Quipolly R9 & R22      | Inaudible#            | 37/36 <sup>1</sup>    | Inaudible                   | 37/36 <sup>1</sup>    |
| С  | Central Quipolly R10*, R11* | Inaudible#            | 39                    | Inaudible                   | 39                    |
| D  | "Hazeldene" R24             | Inaudible#            | 37                    | Inaudible                   | 37                    |
| Е  | "Railway Cottage" R12       | Inaudible#            | 38                    | Inaudible                   | 38                    |
| F  | "Talavera" R96              | Inaudible#            | 38                    | 24                          | 37                    |
| G  | R97                         | <30#                  | 35                    | 35                          | 35                    |
| Н  | "Kyooma" R98*               | Inaudible#            | 36                    | 26                          | 36                    |
| Ι  | Kurrara St, WC              | 32#                   | 35                    | 34                          | 35                    |
| J  | Coronation Ave, WC          | Inaudible#            | 35                    | <30                         | 35                    |
| K  | South St, WC R21*           | Inaudible#            | 39                    | 38                          | 37                    |
| L  | West St, WC R103            | 30#                   | 35                    | Inaudible                   | 35                    |

WC – Werris Creek; \* - Private agreement in place with resident; Yellow Bold – Elevated noise; # Adverse weather with wind >3m/s, temperature inversions >+12°C/100m or >2m/s and >0°C/100m; 1 – R22 criteria is 36 dB(A) L<sub>eq 15min</sub> while R9 is 37 dB(A) L<sub>eq 15min</sub>

### Thursday 11<sup>th</sup> July 2013

|    | Location                    | Day dB(A)             | Criteria dB(A)        | <b>Evening/Night</b>        | Criteria dB(A)        |
|----|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
|    | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| А  | "Rosehill" R5               | Inaudible             | 35                    | 36                          | 35                    |
| B1 | West Quipolly (R7, R8*)     | Inaudible             | 37                    | 37                          | 37                    |
| B2 | West Quipolly (R9 & R22)    | 20                    | 37/36 <sup>1</sup>    | 39                          | 37/36 <sup>1</sup>    |
| С  | Central Quipolly(R10*,R11*) | Inaudible#            | 39                    | 38                          | 39                    |
| D  | "Hazeldene" R24             | Inaudible             | 37                    | 34                          | 37                    |
| Е  | "Railway Cottage" R12       | Inaudible#            | 38                    | 31                          | 38                    |
| F  | "Talavera" R96              | Inaudible#            | 38                    | Barely audible              | 37                    |
| G  | R97                         | Inaudible             | 35                    | Inaudible                   | 35                    |
| Н  | "Kyooma" R98*               | 25                    | 36                    | Inaudible                   | 36                    |
| Ι  | Kurrara St, WC              | Inaudible#            | 35                    | Barely audible              | 35                    |
| J  | <b>Coronation Ave, WC</b>   | Inaudible             | 35                    | 30#                         | 35                    |
| Κ  | South St, WC (R20*, R21*)   | Inaudible#            | 39                    | 33#                         | 37                    |
| L  | West St, WC (R103)          | Inaudible             | 35                    | Inaudible                   | 35                    |

 $\begin{array}{l} WC-Werris\ Creek;\ *\ -\ Private\ agreement\ in\ place\ with\ resident;\ Yellow\ Bold-Elevated\ noise;\ \#\ Adverse\ weather\ with\ wind\ >3m/s,\ temperature\ inversions\ >+12^{\circ}C/100m\ or\ >2m/s\ and\ >0^{\circ}C/100m;\ 1-R22\ criteria\ is\ 36\ dB(A)\ L_{eq\ 15min}\ while\ R9\ is\ 37\ dB(A)\ L_{eq\ 15min}\ begin{tabular}{l}$ 

### 3.1.2 Discussion - Compliance / Non Compliance

There were three noise exceedances recorded during July 2013. Attended noise monitoring was undertaken on Thursday 11<sup>th</sup> July 2013 recording 39dB(A) at Gedhurst (R9) and Mountain View (R22) which is +2/+3dBA respectively over the criteria; and Rosehill (R5) recorded 36dB(A) which is only +1dBA over criteria. The noise exceedance occurred due to gap in the noise control process between listening to the audio from the Werris Creek or Quipolly continuous noise monitor. The EPA has responded acknowledging the good record since October 2010 and this event did not require any further action at this time. "Alco Park" (R21) did record an elevated night time noise level of 38dBA, while above the night time criteria it is within limits outlined in the Private Agreement in place with the owner.

### 3.2 NOISE COMPLAINTS

There were five noise complaints during the period; one related to open cut operations and four related to train noise. The investigation into the four train noise complaints found in every occasion that the main noise source was due to passing trains or activities within the Werris Creek rail yard which is unrelated to WCC operations. The noise complaint related to mining operations occurred on 17<sup>th</sup> May 2013 in the mid morning when there was a rail outage. The complainant indicated without the train noise, the mine was particularly noticeable. While audible, a review of the continuous noise monitoring results found that mining noise levels were within compliance. Specific actions taken in relation to each of these complaints are outlined in **Section 6**.

### 4.0 BLAST

Blast monitoring was undertaken at "Glenara", "Talavera", "Werris Creek" and "Tonsley Park" during the period. Compliance limits for blasting overpressure is 115dBL (and up to 120dBL for only 5% of blasts) and vibration is 5mm/s (and up to 10mm/s for only 5% of blasts). During the period a total of nineteen blasts were fired by the blasting contractor, Orica Mining Services.

### 4.1 BLAST MONITORING

### 4.1.1 Monitoring Data Results

The summary tables of blasting results over the last three months are provided below; however see the blasting results database under **Appendix 5** for more detail.

| May 2012               | "Glenara" |       | "Tonsley Park" |       | Werris Creek |       | "Talavera" |       |  |
|------------------------|-----------|-------|----------------|-------|--------------|-------|------------|-------|--|
| Way 2013               | mm/s      | dB(L) | mm/s           | dB(L) | mm/s         | dB(L) | mm/s       | dB(L) |  |
| Monthly Average        | 0.27      | 98.7  | 0.66           | 100.8 | 0.27         | 102.6 | 0.13       | 102.1 |  |
| Monthly Maximum        | 0.38      | 106.7 | 1.12           | 110.1 | 0.49         | 111.3 | 0.18       | 115.8 |  |
| Annual Average         | 0.26      | 100.6 | 0.78           | 101.7 | 0.47         | 103.2 | 0.13       | 102.1 |  |
| Criteria               | 5         | 115   | 5              | 115   | 5            | 115   | 5          | 115   |  |
| % >115dB(L) or 5mm/s   | 0%        | 0%    | 0%             | 0%    | 0%           | 0%    | 0%         | 6%    |  |
| # Triggered this Month | 4         | 4/9   |                | 9/9   |              | 7/9   |            | 3/9   |  |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| June 2012              | "Gle | nara"  | "Tonsl | ey Park" | Werris | s Creek | "Talavera" |       |  |
|------------------------|------|--------|--------|----------|--------|---------|------------|-------|--|
| Julie 2013             | mm/s | dB(L)  | mm/s   | dB(L)    | mm/s   | dB(L)   | mm/s       | dB(L) |  |
| Monthly Average        | 0.23 | 100.4  | 0.89   | 102.0    | 0.32   | 101.8   | 0.23       | 107.6 |  |
| Monthly Maximum        | 0.24 | 102.1  | 1.75   | 108.0    | 0.47   | 106.1   | 0.24       | 109.1 |  |
| Annual Average         | 0.25 | 100.51 | 0.82   | 101.8    | 0.42   | 102.8   | 0.18       | 104.8 |  |
| Criteria               | 5    | 115    | 5      | 115      | 5      | 115     | 5          | 115   |  |
| % >115dB(L) or 5mm/s   | 0%   | 0%     | 0%     | 0%       | 0%     | 0%      | 0%         | 4.3%  |  |
| # Triggered this Month | 2    | 2/6    | (      | 5/6      | 4      | /6      | 2          | /6    |  |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| Ind., 2012             | "Gle | nara" | "Tonsl | ey Park" | Werris | Creek | "Talavera" |       |  |  |
|------------------------|------|-------|--------|----------|--------|-------|------------|-------|--|--|
| July 2013              | mm/s | dB(L) | mm/s   | dB(L)    | mm/s   | dB(L) | mm/s       | dB(L) |  |  |
| Monthly Average        | 0.53 | 88.8  | 0.96   | 103.1    | 0.57   | 101.7 | 0.07       | 111.6 |  |  |
| Monthly Maximum        | 0.53 | 88.8  | 1.38   | 121.0    | 0.65   | 119.0 | 0.07       | 111.6 |  |  |
| Annual Average         | 0.25 | 100.5 | 0.82   | 101.8    | 0.42   | 102.8 | 0.18       | 104.8 |  |  |
| Criteria               | 5    | 115   | 5      | 115      | 5      | 115   | 5          | 115   |  |  |
| % >115dB(L) or 5mm/s   | 0%   | 0%    | 0%     | 3.7%     | 0%     | 3.7%  | 0%         | 3.7%  |  |  |
| # Triggered this Month | 1    | //    |        | 1//      | 3      | 14    | 1          | //    |  |  |

NM – Site not monitored;\* Indicates project related properties not subject to blasting criteria; Yellow – overpressure >115dB(L) or vibration >1mm/s.

### 4.1.2 Discussion - Compliance / Non Compliance

During the period, two blasts resulted in overpressure levels greater than 115dB(L) at "Talavera" (1<sup>st</sup> May 2013), Werris Creek (8<sup>th</sup> July 2013) and "Tonsley Park" (8<sup>th</sup> July 2013). The blast on the 1<sup>st</sup> May 2013 recorded 115.8dB(L) at "Talavera" due to an underground collapse shot allowing energy to escape into the atmosphere via broken ground created from a previously fired presplit blast. WCC will not fire presplit blasts ahead of any underground blasts into the future. On 8<sup>th</sup> July 2013, elevated overpressure results recorded 119.0dB(L) at Werris Creek and 121.0dB(L) at "Tonsley Park" due to the ejection of energy from the old underground bore and general rifling in the weathered material at natural surface. The "Tonsley Park" result was not an exceedance due to Whitehaven Coal acquiring the property in November 2012. The blast design protocol was reviewed following this blast to include triggers for identifying any existing holes within a shot to be filled with stemming and the stemming height in this weathered material to be increased from 4m to 5m to improve confinement.

### 4.2 BLAST COMPLAINTS

There were twenty blast complaints during the period from five separate blast events. The increase in blasting complaints is believed to be due the sensitization of the Werris Creek community due the elevated overpressure from the blast on 8<sup>th</sup> July 2013 receiving 11 community complaints. In addition, WCC have recently increased the volume and size of blasts to produce enough inventory to maintain operational continuity of the new large Excavator EX5600 required by WCC to achieve the budgeted 2.5Mt production rate for 2013-2014. To prevent the continued escalation of blasting complaints, WCC and Orica have improved the cross communication and signoff process as well as developed blast design protocols to establish maximum parameters to minimize the potential for complaints from either overpressure or vibration generated by the larger shots. Specific actions taken in relation to these complaints are outlined in **Section 6**.

### 5.0 WATER

The groundwater monitoring program monitors groundwater levels bi-monthly and groundwater quality six monthly. Surface water monitoring is undertaken quarterly. There was one surface water discharge events during the period.

### 5.1 GROUND WATER

Groundwater monitoring is undertaken to monitor if there are any impacts on groundwater quality and levels as a result of the mining operations. WCC monitors 35 groundwater bores and piezometers in the key aquifers surrounding the mine including Werris Basalt (near to WCC and further afield) and Quipolly Creek Alluvium. Bi-monthly groundwater level monitoring was completed on 7<sup>th</sup>, 8<sup>th</sup> and 9<sup>th</sup> May 2013 and 27<sup>th</sup> and 28<sup>th</sup> July 2013. No groundwater quality monitoring was undertaken during the period.

### 5.1.1 Monitoring Data Results

A summary of groundwater monitoring results is provided below with the field sheets provided in Appendix 6.

|      | Site         | July  | 2013 | May   | 2013 | Comments                                    |
|------|--------------|-------|------|-------|------|---------------------------------------------|
| L    | MW1          | 54.06 | 0%   | 54.22 | 0%   |                                             |
| ear  | MW2          | 25.91 | -2%  | 25.42 | 0%   |                                             |
| Z    | MW3          | 14.97 | 0%   | 15.01 | 1%   |                                             |
| C It | MW4B         | 10.07 | 5%   | 9.95  | 4%   |                                             |
| VC(  | MW5          | 7.91  | -5%  | 7.44  | 3%   |                                             |
| a P  | MW5B         | 7.48  | -5%  | 7.12  | 2%   |                                             |
| Ŀ.   | MW6          | 12.49 | 0%   | 12.49 | 0%   |                                             |
| Vel  | P1           |       |      | 34.65 | -8%  | Previous dip in January. 20m from pit void. |
| -    | MW27         | 43.03 | -2%  | 42.04 | -3%  | Likely to be affected by mine advancement   |
|      | MW8          | 15.28 | -6%  | 14.42 | -2%  |                                             |
| It   | MW9          | 15.74 | -3%  | 15.27 | 1%   |                                             |
| ISA  | MW10         | 17.01 | 1%   | 17.10 | 1%   |                                             |
| B    | MW14         | 17.39 | -2%  | 16.96 | -1%  |                                             |
| rie  | MW14B        | 17.15 | -3%  | 16.72 | -1%  |                                             |
| Ver  | <b>MW17B</b> | 9.63  | -1%  | 9.53  | 0%   |                                             |
| 2    | MW19A        | 5.73  | 5%   | 6.03  | 14%  | Bore pump influenced previous result        |
|      | <b>MW20</b>  | 19.51 | 0%   | 19.46 | 0%   |                                             |

|     | Site  | July  | 2013 | May  | 2013 | Comments                                    |
|-----|-------|-------|------|------|------|---------------------------------------------|
|     | MW12  |       |      | 8.10 | -13% | Blockage in bore at 8.5m.                   |
|     | MW13  | 4.6   | -2%  | 4.52 | -3%  | Previous dip during large wet weather event |
|     | MW13B | 3.19  | 0%   | 3.18 | -2%  | Previous dip during large wet weather event |
|     | MW13D | 4.61  | -1%  | 4.58 | -5%  | Previous dip during large wet weather event |
| H   | MW15  | 4.13  | -1%  | 4.10 | -4%  | Previous dip during large wet weather event |
| viu | MW16  | 4.65  | -2%  | 4.56 | -4%  | Previous dip during large wet weather event |
| Ilu | MW17A | 3.79  | -4%  | 3.64 | -4%  | Previous dip during large wet weather event |
| Y A | MW18A | 3.57  | -3%  | 3.45 | -4%  | Previous dip during large wet weather event |
| ų.  | MW21A | 6.56  | -3%  | 6.34 | 0%   | Previous dip during large wet weather event |
| ų   | MW22A | 4.77  | -3%  | 4.62 | -3%  | Previous dip during large wet weather event |
| õ   | MW22B | 4.93  | -1%  | 4.89 | -5%  | Previous dip during large wet weather event |
|     | MW23A | 3.64  | 6%   | 3.86 | -10% | Previous dip during large wet weather event |
|     | MW23B | 4.23  | -3%  | 4.10 | -1%  | Previous dip during large wet weather event |
|     | MW28A | 10.91 | -9%  | 9.97 | -5%  | Previous dip during large wet weather event |
|     | MW32  | 3.92  | 5%   | 4.12 | -11% | Previous dip during large wet weather event |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; Dip – is distance in meters from top of bore to groundwater surface; Red – Greater than 15% change/potential compliance issue; Orange – Change decrease; Green – change increase or no change.

### 5.1.2 Discussion - Compliance / Non Compliance

All groundwater levels are within longer term averages and the Site Water Management Plan trigger values.

### 5.2 SURFACE WATER

Surface water monitoring is undertaken from local creeks offsite as well as from discharge point dirty water dams to monitor for potential water quality issues. Quarterly surface water monitoring was undertaken on 25<sup>th</sup> June 2013.

### 5.2.1 Monitoring Data Results

Summary of surface water quality monitoring results is provided below with the laboratory reports provided in **Appendix 7**.

| Site | pН                                                          | EC   | TSS | <b>O&amp;G</b> | Change from Previous Quarter                                          |  |  |  |  |  |  |  |  |  |
|------|-------------------------------------------------------------|------|-----|----------------|-----------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|      |                                                             |      |     |                | ONSITE                                                                |  |  |  |  |  |  |  |  |  |
| SB2  | 8.66                                                        | 924  | 8   | <5             | pH increased 1.12, EC ERROR, TSS decreased 16, O&G no change.         |  |  |  |  |  |  |  |  |  |
| SB9  | 7.95                                                        | 203  | 48  | <5             | pH increased 0.42, EC ERROR, TSS increased 279, O&G no change.        |  |  |  |  |  |  |  |  |  |
| SB10 | -                                                           | -    | -   | -              | Under construction due to Rail Loop Project.                          |  |  |  |  |  |  |  |  |  |
|      | BIO Under construction due to Rail Loop Project.<br>OFFSITE |      |     |                |                                                                       |  |  |  |  |  |  |  |  |  |
| QCU  | 7.74                                                        | 484  | 5   | <5             | pH increased 0.45, EC increase 17, TSS no change, O&G no change.      |  |  |  |  |  |  |  |  |  |
| QCD  | 7.95                                                        | 850  | <5  | <5             | pH increased 0.18, EC increased 82, TSS decreased 11, O&G no change.  |  |  |  |  |  |  |  |  |  |
| WCU  | -                                                           | -    | -   | -              | Dry – no sample available.                                            |  |  |  |  |  |  |  |  |  |
| WCD  | 8.26                                                        | 1350 | 12  | <5             | pH decreased 0.05, EC increased 320, TSS decreased 12, O&G no change. |  |  |  |  |  |  |  |  |  |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; TSS – Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G – Oil and Grease measures amount of hydrocarbons (oils and fuels) in water; Orange – Issue with water quality; Green – water quality OK.

### 5.2.2 Discussion - Compliance / Non Compliance

All onsite and offsite water quality is consistent with longer term averages and within the site water management plan trigger values.

### 5.3 SURFACE WATER DISCHARGES

### 5.3.1 Monitoring Data Results

There was one controlled discharge during the period. A summary of discharge monitoring results is provided below with the laboratory reports provided in **Appendix 8**.

| Date       | Dam                    | pН   | EC  | TSS | O&G | Compliance                            | Туре       | 5 Day<br>Rain  |
|------------|------------------------|------|-----|-----|-----|---------------------------------------|------------|----------------|
| 25/06/2013 | SB9                    | 7.95 | 203 | 48  | <5  | Compliant – Water quality in criteria | Controlled | Not Applicable |
| Crite      | Criteria 8.5 N/A 50 10 |      |     | 50  | 10  |                                       |            |                |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; TSS – Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G – Oil and Grease measures amount of hydrocarbons (oils and fuels) in water; Yellow – indicates results outside criteria due to 5 day rain >39.2mm.

### 5.3.2 Discussion - Compliance / Non Compliance

The June 2013 dirty water discharge was in compliance with WCC's Environmental Protection Licence 12290 and there were no impacts on water quality monitored in Quipolly and Werris Creeks' catchments as a result of the dirty water discharge events.

### 5.3 WATER COMPLAINTS

There were no water complaints during the period.

### 6.0 COMPLAINTS SUMMARY

There were thirty five complaints received during the period with the details summarised below. There were twenty complaints related to blasting; five complaints relating to noise; four complaints related to lights; three complaints related to dust and three other complaints. There were nineteen different complainants during the period with thirty two complaints from Werris Creek residents and three complaints from Quipolly residents.

| #               | Date                             | Complainant                   | Complaint                                                                                                                                                 | Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Action Taken                                                                                                                                                                          |
|-----------------|----------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 287             | 01/05/2013<br>5:03pm             | Anonymous/EPA<br>Werris Creek | Excessive noise<br>experienced on Saturday<br>and Sunday night (27th<br>and 28th April 2013)<br>after 10.30pm, Saturday<br>night was particularly<br>bad. | Wind directions from the north and west do<br>not propagate or enhance noise emissions<br>from WCC TLO which is south west of<br>Werris Creek.                                                                                                                                                                                                                                                                                                                                                                                                                                                | Written response provided<br>to EPA.                                                                                                                                                  |
| 288             | 01/05/2013<br>5:03pm             | Anonymous/EPA<br>Werris Creek | Intrusive lighting from<br>the coal loader on<br>Saturday and Sunday<br>night (27th and 28th<br>April 2013).                                              | Lighting camera was reviewed for Saturday<br>and Sunday night and did not identify any<br>intrusive lights from Werris Creek Coal<br>(both open cut and train load out facility).<br>The only time light was visible was when<br>the trains arrived and started being loaded<br>with the dozers operating on the coal<br>stockpile.                                                                                                                                                                                                                                                           | Written response provided<br>to EPA.                                                                                                                                                  |
| 289             | 17/05/2013<br>7:30am             | Werris Creek                  | Mine noise is loud<br>Thursday and Friday<br>morning (16 <sup>th</sup> & 17 <sup>th</sup><br>May 2013) and can hear<br>dump trucks.                       | Background noise levels are similar or<br>higher than LF (mining) noise levels<br>indicating that urban and traffic noises were<br>dominant although mining was audible.                                                                                                                                                                                                                                                                                                                                                                                                                      | EO met with complainant.<br>Written response provided<br>to complainant.                                                                                                              |
| 290             | 5/06/2013<br>10:33am             | Q<br>Quipolly                 | Sulfurous Odour present<br>this morning (5 <sup>th</sup> June<br>2013) and noticeable for<br>the last week.                                               | Spontaneous combustion of waste material<br>present in pit that had not been covered,<br>unrelated to former underground mine.<br>Gases from spon comb unlikely to contain<br>high levels of SO <sub>2</sub> or H <sub>2</sub> S due to low<br>sulphur levels in WCC coal. If odour from<br>spon comb, the odour would be more<br>bituminous and if present offsite only due<br>to temperature inversion/low winds<br>trapping rather than disapating gases. No<br>alarms from personal gas detectors of<br>employees during the same period,<br>therefore unlikely to be at a harmful level. | Dumping in pit<br>recommenced with priority<br>given to burying areas of<br>overburden with spon<br>comb. EO met with<br>complainant. Written<br>response provided to<br>complainant. |
| 291<br>&<br>292 | 17/06/2013<br>6:49am &<br>8:23am | AD & AP<br>Quipolly           | Sulfurous Odour present<br>this morning (17 <sup>th</sup> June<br>2013) and concerned<br>about air quality and<br>health impacts.                         | Spontaneous combustion of waste material<br>present in pit that had not been covered,<br>unrelated to former underground mine.<br>Gases from spon comb unlikely to contain<br>high levels of SO <sub>2</sub> or H <sub>2</sub> S due to low<br>sulphur levels in WCC coal. If odour from<br>spon comb, the odour would be more<br>bituminous and if present offsite only due<br>to temperature inversion/low winds<br>trapping rather than disapating gases. No<br>alarms from personal gas detectors of<br>employees during the same period,<br>therefore unlikely to be at a harmful level. | Dumping in pit<br>recommenced with priority<br>given to burying areas of<br>overburden with spon<br>comb. EO met with<br>complainant. Written<br>response provided to<br>complainant. |
| 293<br>&<br>294 | 18/06/2013<br>1:12pm &<br>1:18pm | AI & AL<br>Werris Creek       | Blast experienced in two<br>waves with the first<br>shaking the house and<br>the second lesser wave<br>just rattling cupboards.                           | WCC shot #44-2013 (S16_8-11_385 Pt2)<br>was fired at 1:11pm on Tuesday 18 <sup>th</sup> June<br>2013 was in compliance. Blast in upper<br>horizon of pit and had a high MIC.                                                                                                                                                                                                                                                                                                                                                                                                                  | WCC to review whether to<br>reduce size of RL385<br>shots. Written response<br>provided to complainant.                                                                               |

| 295              | 18/06/2013<br>7:30pm  | A<br>Werris Creek       | Bright light shining at<br>house but stopped by<br>mid evening.                                                     | Lighting camera not operational on 18/19<br>June due to modem error. Maintenance<br>building new drill on northern end of MIA<br>with lighting plant shining to the east but<br>works finished at 9pm and light turned off.                                                                                                    | Lighting plant relocated<br>next night. MIA bund to be<br>constructed to provide a<br>barrier for future workshop<br>to prevent further<br>recurrence. Written<br>response provided to<br>complainant.                                                                         |
|------------------|-----------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 296              | 02/07/2013<br>12:40am | A<br>Werris Creek       | Spotlight south of coal<br>loader shining on house<br>evening 1 <sup>st</sup> July 2013.                            | Mining operations constructing MIA Bund.<br>Lighting plant set up orientated westward<br>and barely visible. Werris Creek lighting<br>camera shows that dozer and truck<br>headlights were intermittently visible but in<br>accordance with PA10_0059.                                                                         | Written response provided<br>to complainant.                                                                                                                                                                                                                                   |
| 297<br>to<br>307 | 08/07/2013<br>Various | Various<br>Werris Creek | Blast caused significant<br>shaking of house and<br>community amenity<br>impact.                                    | WCC shot #48-2013 (S16_12-<br>18_Blackseam) was fired at 1:35pm on<br>Monday 8 <sup>th</sup> July 2013 was in compliance<br>with PA10_0059 and EPL12290.<br>Significant air blast due to energy released<br>into atmosphere from old bore and surface<br>of shot resulting in elevated air blast<br>>115dB(L) in Werris Creek. | WCC and Orica to develop<br>blast protocols to reduce<br>potential air blast from<br>above RL385m. Improved<br>communication and signoff<br>process. Written response<br>provided to complainants.                                                                             |
| 308              | 08/07/2013<br>4:31pm  | EPA/A<br>Werris Creek   | General dust problem<br>from mining operations<br>and coal stockpile.                                               | Average dust levels for previous fortnight<br>were PM10 9.2µg/m <sup>3</sup> and PM2.5 6.3µg/m <sup>3</sup> .<br>PM10 air quality less than 30µg/m <sup>3</sup> is<br>considered good air quality.                                                                                                                             | Written response provided<br>to complainant. Offer to<br>swab/sample dust rejected.                                                                                                                                                                                            |
| 309              | 15/07/2013<br>11:48pm | A<br>Werris Creek       | Noise from coal loader<br>deafening evening 15 <sup>th</sup><br>July 2013.                                          | Open cut and Train Load Out operated to<br>3:30am. Northerly wind did not enhance<br>noise from WCC. Review of audio<br>indicates significant noise from trains<br>passing through Werris Creek.                                                                                                                               | Written response provided to complainant.                                                                                                                                                                                                                                      |
| 310              | 15/07/2013<br>11:58pm | A<br>Werris Creek       | Dust from coal loader<br>with pictures of alleged<br>coal dust on tiles in<br>house.                                | Average PM10 dust levels for previous day<br>were less than $20\mu g/m^3$ . PM10 air quality<br>less than $30\mu g/m^3$ is considered good air<br>quality.                                                                                                                                                                     | Written response provided<br>to complainant. Offer to<br>swab/sample dust rejected.                                                                                                                                                                                            |
| 311<br>to<br>314 | 17/07/2013<br>Various | Various<br>Werris Creek | Blast rattled houses with<br>three complaints alleging<br>damage.                                                   | WCC shot #49-2013 (S13_18-<br>23_350TSB35) was fired at 3:32pm on<br>Wednesday 17 <sup>th</sup> July 2013 was in<br>compliance with PA10_0059 and<br>EPL12290. Large blast with 888 holes<br>performed as expected but complaints from<br>dominant vibration wave frequency of 12-<br>13Hz.                                    | WCC and Orica to develop<br>blast protocols to reduce<br>potential air blast from<br>above RL385m. Improved<br>communication and signoff<br>process. Written response<br>provided to complainants.<br>Undertake Property<br>Investigations in<br>accordance with<br>PA10_0059. |
| 315              | 17/07/2013<br>1:45pm  | W<br>Werris Creek       | Black dust on outdoor<br>tables and under veranda<br>believed to be coal.                                           | Average dust levels for previous fortnight<br>were PM10 9.2µg/m <sup>3</sup> and PM2.5 6.3µg/m <sup>3</sup> .<br>PM10 air quality less than 30µg/m <sup>3</sup> is<br>considered good air quality.                                                                                                                             | Written response provided<br>to complainant. Offer to<br>swab/sample dust.                                                                                                                                                                                                     |
| 316              | 26/07/2013<br>4:20pm  | EPA/A<br>Werris Creek   | Alleged that WCC fired<br>two blasts both with<br>significant dust.                                                 | WCC only fired one shot #50-2013<br>(S13_22-23_350TSB36) at 1:36pm on<br>Friday 26 <sup>th</sup> July 2013 was in compliance<br>with PA10_0059 and EPL12290.<br>Second dust cloud was from material<br>caught on highwall falling into the pit after<br>the blast onto ash like material.                                      | Written response provided<br>to complainant.                                                                                                                                                                                                                                   |
| 317              | 27/07/2013<br>12:07am | A<br>Werris Creek       | Bright spotlights shining<br>on home evening 26 <sup>th</sup> ,<br>27 <sup>th</sup> and 28 <sup>th</sup> July 2013. | Rail Loop construction was undertaking<br>night works on 26 <sup>th</sup> & 27 <sup>th</sup> July only. Light<br>plants orientated westward. Werris Creek<br>lighting camera shows that construction<br>works were visible as well as Train Load<br>Out on 28 <sup>th</sup> July but in accordance with<br>PA10_0059.          | Written response provided<br>to complainant.                                                                                                                                                                                                                                   |
| 318              | 29/07/2013<br>8:53pm  | A<br>Werris Creek       | Noise from coal loader<br>morning 29 <sup>th</sup> July 2013<br>between 12am & 1am.                                 | Open cut and Train Load Out did not<br>operate. Northerly wind did not enhance<br>noise from WCC. Review of audio<br>indicates significant noise from trains<br>passing through Werris Creek.                                                                                                                                  | Written response provided<br>to complainant.                                                                                                                                                                                                                                   |

| 319             | 01/08/2013<br>11:55am                 | EPA/A<br>Werris Creek  | Noise from coal loader<br>morning 30 <sup>th</sup> July 2013<br>between 12:45am &<br>1am. | Open cut and Train Load Out operated to<br>3:30am. No trains loaded. North westerly<br>wind did not enhance noise from WCC.<br>Review of audio indicates significant noise<br>from trains passing through Werris Creek.                                                                                                                                                                      | Written response provided to complainant.    |
|-----------------|---------------------------------------|------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 320<br>&<br>321 | 30/07/2013<br>12:13pm<br>&<br>12:36pm | AL & S<br>Werris Creek | Blast shook house but<br>not as bad as previous<br>blasts.                                | WCC shot #51-2013 (S13_10-13_330) was<br>fired at 12:12pm on Tuesday 30 <sup>th</sup> July 2013<br>was in compliance with PA10_0059 and<br>EPL12290. Blast performed as expected,<br>dominant vibration wave frequency of<br>15Hz increases risk of complaints. Larger<br>blasts are required to produce enough<br>material for EX5600 excavator to achieve<br>2.5Mt coal production target. | Written response provided<br>to complainant. |

### 7.0 GENERAL

Please feel free to ask any questions in relation to the information contained within this document during Item 7 of the meeting agenda.

Regards Andrew Wright Environmental Officer

## Appendix 1 – Dust Monitoring Results – PM10

#### Werris Creek Coal HVAS TEOM Dust Monitoring 2013-2014

| Site                   | 2.5TEOM92<br>Werris | Monthly | Annual  | 10TEOM92<br>Werris | EPL#30<br>Monthly | Annual  | HVP20<br>Tonsley | EPL#1<br>Monthly | Rolling<br>Annual | HVP98       | EPL#28<br>Monthly | Rolling<br>Annual | HVP1        | Monthly    | Rolling<br>Annual | HVP11       | EPL#29<br>Monthly | Rolling<br>Annual | HVT98       | Monthly      | Rolling<br>Annual | PM10<br>24hr | PM10<br>Annual | TSP<br>Annual |
|------------------------|---------------------|---------|---------|--------------------|-------------------|---------|------------------|------------------|-------------------|-------------|-------------------|-------------------|-------------|------------|-------------------|-------------|-------------------|-------------------|-------------|--------------|-------------------|--------------|----------------|---------------|
| Date                   | Creek               | Summary | Average | Creek              | Summary           | Average | Park             | Summary          | Average           | Kyooma      | Summary           | Average           | Escott      | Summary    | Average           | Glenara     | Summary           | Average           | Kyooma      | Summary      | Average           | Limit        | Average        | Average       |
| 03-Apr-13<br>09-Apr-13 |                     | 6.2     | 6.2     |                    | 4.0<br>12.3       | 12.3    | 18               | 0.8<br>14.6      | 17.9              | 35          | 3.5<br>7.2        | 7.9<br>5.7        | 4.8         | 4.8<br>8.7 | 8.1               | 12          | 12.3              | 12.4              | 7           | 12.5         | 14.4              | 50           | 30<br>30       | 90            |
| 15-Apr-13              |                     | 5.9     |         |                    | 11.3              |         | 16               | 15.9             | 16.5              | 13          | 6.1               | 8.2               | 14          | 8.2        | 9.9               | 31          | 14.3              | 18.4              | 20          | 11.4         | 13.8              | 50           | 30             | 90            |
| 21-Apr-13              |                     | 12.7    |         |                    | 25.7              |         | 9                | 17.9             | 14.6              | 4           | 13.1              | 7.2               | 5           | 13.5       | 8.7               | 16          | 30.5              | 17.8              | 8           | 20.0         | 12.5              | 50           | 30             | 90            |
| 27-Apr-13              |                     |         |         |                    | 5.0               |         | 19               |                  | 15.4              | 17          | 5.0               | 9.1               | 16          | 2.2        | 10.2              | 27          | 0.7               | 19.7              | 50          | 47.4         | 19.9              | 50           | 30             | 90            |
| 03-Iviay-13            |                     | 2.3     | 6.4     |                    | 5.0<br>11 9       | 12.1    | 15               | 5.5<br>15.4      | 15.4              | 8<br>20     | 5.2               | 8.9<br>10.4       | 7           | 3.2        | 9.8               | 20          | 6.7<br>17.6       | 19.0              | 76          | 17.4<br>35.8 | 27.7              | 50           | 30             | 90            |
| 15-May-13              |                     | 6.5     |         |                    | 11.4              |         | 6                | 18.3             | 14.5              | 5           | 9.6               | 9.8               | 3           | 9.9        | 9.0               | 7           | 19.1              | 17.6              | 17.4        | 18.9         | 26.4              | 50           | 30             | 90            |
| 21-May-13              |                     | 14.0    |         |                    | 26.8              |         | 19               | 19.0             | 15.0              | 10          | 19.6              | 9.8               | 10          | 16.2       | 9.1               | 19          | 27.4              | 17.7              | 18          | 75.5         | 25.4              | 50           | 30             | 90            |
| 27-May-13              |                     |         |         |                    | 4.0               |         | 17               | 4.0              | 15.2              | 6           |                   | 9.4               | 7           | 4.7        | 8.9               | 11          | 4.0               | 17.0              | 13          |              | 24.2              | 50           | 30             | 90            |
| 02-Jun-13              |                     | 2.9     | 6.4     |                    | 4.0               | 11.1    | 3                | 1.3<br>77        | 14.1              | 1           | 1.1               | 8.7               | 2           | 1.7        | 8.3               | 3           | 1.3               | 15.8              | 3           | 3.2<br>6.4   | 22.3              | 50           | 30             | 90            |
| 14-Jun-13              |                     | 6.3     | 0.1     |                    | 8.5               |         | 1                | 6.4              | 12.5              | 3           | 3.2               | 7.8               | 2           | 3.5        | 7.4               | 1           | 3.3               | 13.7              | 3           | 4.6          | 19.6              | 50           | 30             | 90            |
| 20-Jun-13              |                     | 12.2    |         |                    | 16.7              |         | 11               | 16.5             | 12.4              | 4           | 6.2               | 7.5               | 6           | 7.2        | 7.3               | 9           | 10.8              | 13.4              | <0.1        | 13.1         | 19.6              | 50           | 30             | 90            |
| 26-Jun-13              |                     |         |         |                    |                   |         | 9                |                  | 12.2              | 3           |                   | 7.2               | 4           |            | 7.1               | 2           |                   | 12.7              |             |              | 19.6              | 50           | 30             | 90            |
| 02-Jul-13              |                     | 2.5     | 64      |                    | 3.5               | 10.6    | 12               | 5.6              | 12.2              | 3           | 2.7               | 6.9               | 6           | 4.2        | 7.0               | 5           | 1.9               | 12.2              | 4           | 3.9          | 18.5              | 50           | 30             | 90            |
| 14-Jul-13              |                     | 5.9     | 0.4     |                    | 9.2               | 10.0    | 14               | 12.1             | 12.6              | 5           | 3.3               | 6.7               | 6           | 5.6        | 7.0               | 9           | 4.8               | 11.8              | 8           | 6.9          | 17.2              | 50           | 30             | 90            |
| 20-Jul-13              |                     | 15.2    |         |                    | 17.7              |         | 6                | 18.6             | 12.3              | 3           | 5.6               | 6.5               | 4           | 8.6        | 6.9               | 2           | 9.3               | 11.3              | 6           | 9.2          | 16.5              | 50           | 30             | 90            |
| 26-Jul-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 01-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 13-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 19-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 25-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 31-Aug-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 12-Sep-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 12 Cep 10<br>18-Sep-13 |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 24-Sep-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 30-Sep-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 06-Oct-13<br>12-Oct-13 |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50<br>50     | 30<br>30       | 90<br>90      |
| 12-Oct-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 24-Oct-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 30-Oct-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 05-NOV-13<br>11-Nov-13 |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 17-Nov-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 23-Nov-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 29-Nov-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 11-Dec-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 17-Dec-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 23-Dec-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 29-Dec-13              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 10-Jan-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90<br>90      |
| 16-Jan-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 22-Jan-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 28-Jan-14<br>03-Eeb-14 |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5<br>6.5        |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5<br>16.5      | 50<br>50     | 30             | 90            |
| 03-Feb-14<br>09-Feb-14 |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90<br>90      |
| 15-Feb-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 21-Feb-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               | <b> </b>    |            | 6.9               | <b> </b>    |                   | 11.3              | L           |              | 16.5              | 50           | 30             | 90            |
| 27-Feb-14<br>05-Mar-14 |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5<br>6.5        |             |            | 6.9<br>6.9        |             |                   | 11.3              |             |              | 16.5<br>16.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 11-Mar-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90<br>90      |
| 17-Mar-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 23-Mar-14              |                     |         |         |                    |                   |         |                  |                  | 12.3              |             |                   | 6.5               |             |            | 6.9               |             |                   | 11.3              |             |              | 16.5              | 50           | 30             | 90            |
| 29-Mar-14<br>Min       | 1                   |         |         | I                  |                   |         | 1.3              |                  | 12.3              | 11          |                   | 6.5               | 17          |            | 6.9               | 13          |                   | 11.3              | 32          |              | 16.5              | 50           | 30             | 90            |
| Median                 |                     |         |         |                    |                   |         | 14.0             |                  |                   | 4.7         |                   |                   | 5.6         |            |                   | 9.4         |                   |                   | 9.2         |              |                   |              |                |               |
| i⊪ax<br>Capture        |                     |         |         |                    |                   |         | 19.0<br>31%      |                  |                   | 19.6<br>31% |                   |                   | 16.2<br>31% |            |                   | 30.5<br>31% |                   |                   | 75.5<br>28% |              |                   |              |                |               |
| •                      |                     |         |         |                    |                   |         |                  |                  |                   |             |                   |                   |             |            |                   |             |                   |                   |             |              |                   |              |                |               |

<u>Appendix 2 – Dust Monitoring Results – Deposited Dust</u>

|          | Deposited Dust - Werris Creek Coal Mine 2013-2014           MONTH         April 2013         June         June         August         September         October         November         December         January         February         March         ANNUAL         AVERAGE - MINIMUM         MAXIMUM         AQGHGMP |                     |                  |            |          |              |           |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|------------|----------|--------------|-----------|--------|-----------|-----------------|------------------|------------------|---------|----------|-------|---------|-----------|---------|---------|---------------------|
|          | M<br>(a/n                                                                                                                                                                                                                                                                                                                 | IONTH<br>a2/month)  |                  | April 2013 | May 2013 | June<br>2013 | July 2013 | August | September | October<br>2013 | November<br>2013 | December<br>2013 | January | February | March |         | AVERAGE - | MINIMUM | MAXIMUM | AQGHGMP<br>Criteria |
|          | (9/11                                                                                                                                                                                                                                                                                                                     |                     | Total<br>Matter  | 4.1        | 1.5      | 1.3          | 1.2       | 2013   | 2013      | 2013            | 2013             | 2013             | 2014    | 2014     | 2014  | AVENAGE |           |         |         | Onteria             |
| -        | DG2                                                                                                                                                                                                                                                                                                                       | Cintra              | Ash<br>Content   | 3.0        | 0.8      | 0.9          | 0.8       |        |           |                 |                  |                  |         |          |       | 2.0     | 1.3       | 1.2     | 4.1     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 0.7        | 1.0      | 0.9          | 0.8       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG5                                                                                                                                                                                                                                                                                                                       | Railway View        | Ash              | 0.5        | 0.6      | 0.9          | 0.6       |        |           |                 |                  |                  |         |          |       | 0.9     | 0.9       | 0.7     | 1.0     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 1.2        | 0.6      | 0.4          | 0.6       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| EPL #1   | DG20                                                                                                                                                                                                                                                                                                                      | Tonsley Park        | Ash              | 0.7        | 0.3      | 0.4          | 0.4       |        |           |                 |                  |                  |         |          |       | 0.7     | 0.7       | 0.4     | 1.2     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 2.6        | 1.0      | 1.2          | 0.8       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG15                                                                                                                                                                                                                                                                                                                      | Plain View          | Ash              | 1.3        | 0.6      | 1.0          | 0.5       |        |           |                 |                  |                  |         |          |       | 1.4     | 1.4       | 0.8     | 2.6     | 4.0                 |
| -        |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 1.4        | 0.8      | 0.3          | 0.4       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG9                                                                                                                                                                                                                                                                                                                       | Marengo             | Ash              | 0.6        | 0.3      | 0.2          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.7     | 0.4       | 0.3     | 1.4     | 4.0                 |
| -        |                                                                                                                                                                                                                                                                                                                           | Mountain            | Total            | 0.7        | 0.8      | 1.5          | 0.5       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG22                                                                                                                                                                                                                                                                                                                      | View                | Ash              | 0.5        | 0.7      | 1.2          | 0.4       |        |           |                 |                  |                  |         |          |       | 0.9     | 0.9       | 0.5     | 1.5     | 4.0                 |
| -        |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 0.2        | 0.2      | 0.2          | 0.1       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| EPL#29   | DG11                                                                                                                                                                                                                                                                                                                      | Glenara             | Ash              | 0.1        | 0.1      | 0.1          | 0.1       |        |           |                 |                  |                  |         |          |       | 0.2     | 0.2       | 0.1     | 0.2     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 0.8        | 0.5      | 0.4          | 0.3       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG24                                                                                                                                                                                                                                                                                                                      | Hazeldene           | Ash              | 0.4        | 0.4      | 0.4          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.5     | 0.5       | 0.3     | 0.8     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 0.8        | 0.7      | 0.4          | 0.4       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG17                                                                                                                                                                                                                                                                                                                      | Woodlands           | Ash              | 0.5        | 0.4      | 0.4          | 0.3       |        |           |                 |                  |                  |         |          |       | 0.6     | 0.6       | 0.4     | 0.8     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 0.7        | 0.4      | 0.2          | 0.2       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG96                                                                                                                                                                                                                                                                                                                      | Talavera            | Ash              | 0.4        | 0.2      | 0.2          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.4     | 0.4       | 0.2     | 0.7     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 0.2        | 0.2      | 0.1          | 0.2       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| EPL#28   | DG98                                                                                                                                                                                                                                                                                                                      | Kyooma              | Ash              | 0.2        | 0.2      | 0.1          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.2     | 0.2       | 0.1     | 0.2     | 4.0                 |
| -        |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 0.4        | 0.3      | 0.3          | 0.3       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG14                                                                                                                                                                                                                                                                                                                      | Greenslopes         | Ash              | 0.3        | 0.2      | 0.3          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.3     | 0.3       | 0.3     | 0.4     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           | Warria Creak        | Total            | 0.3        | 0.3      | 0.2          | 0.9       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG62                                                                                                                                                                                                                                                                                                                      | South               | Ash              | 0.2        | 0.2      | 0.2          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.4     | 0.3       | 0.2     | 0.9     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           | Warria Create       | Total            | 0.5        | 0.8      | 0.3          | 0.3       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| EPL#30   | DG92                                                                                                                                                                                                                                                                                                                      | Centre              | Ash              | 0.3        | 0.6      | 0.2          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.5     | 0.5       | 0.3     | 0.8     | 4.0                 |
| <u> </u> | <u> </u>                                                                                                                                                                                                                                                                                                                  | <u> </u>            | Total            | 1.2        | 0.5      | 0.4          | 0.5       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG101                                                                                                                                                                                                                                                                                                                     | Westfall            | Ash              | 0.8        | 0.5      | 0.2          | 0.3       |        |           |                 |                  |                  |         |          |       | 0.7     | 0.7       | 0.4     | 1.2     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           | 1                   | Total            | 0.8        | 0.5      | 0.3          | 0.7       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG103                                                                                                                                                                                                                                                                                                                     | West Street         | Ash              | 0.6        | 0.5      | 0.2          | 0.4       |        |           |                 |                  |                  |         |          |       | 0.6     | 0.6       | 0.3     | 0.8     | 4.0                 |
|          |                                                                                                                                                                                                                                                                                                                           |                     | Total            | 2.4        | 0.2      | 1.6          | 0.7       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG1                                                                                                                                                                                                                                                                                                                       | Escott              | Ash              | 1.0        | 0.2      | 0.6          | 0.5       |        |           |                 |                  |                  |         |          |       | 1.2     | 0.8       | 0.2     | 2.4     | 4.0                 |
| <u> </u> | <u> </u>                                                                                                                                                                                                                                                                                                                  | <del> </del>        | Total            | 1.1        | 0.6      | 0.7          | 0.4       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG3                                                                                                                                                                                                                                                                                                                       | Eurunderee          | Ash              | 0.8        | 0.5      | 0.4          | 0.2       |        |           |                 |                  |                  |         |          |       | 0.7     | 0.7       | 0.4     | 1.1     | 4.0                 |
| <u> </u> | <u> </u>                                                                                                                                                                                                                                                                                                                  |                     | Total            | 13.7       | 6.2      | 54.1         | 0.4       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| -        | DG34                                                                                                                                                                                                                                                                                                                      | 8 Kurrara<br>Street | Matter<br>Ash    | 9.8        | 4.6      | 43.6         | 0.2       |        |           |                 |                  |                  |         |          |       | 18.6    | 0.4       | 0.4     | 54.1    | 4.0                 |
|          | <u> </u>                                                                                                                                                                                                                                                                                                                  | ┢────               | Content<br>Total | 0.8        | 0.4      | 0.4          | 0.3       |        |           |                 |                  |                  |         |          |       |         |           |         |         |                     |
| •        | DG106                                                                                                                                                                                                                                                                                                                     | Villamagna          | Matter<br>Ash    | 0.5        | 0.3      | 0.2          | 0.1       |        |           |                 |                  |                  |         |          |       | 0.5     | 0.5       | 0.3     | 0.8     | 4.0                 |
|          | 1                                                                                                                                                                                                                                                                                                                         | 1                   | Content          | 0.5        | 0.5      | 0.2          | 0.1       |        | 1         |                 |                  | 1                | 1       |          |       |         |           |         |         |                     |

Note: All results are in the form of Insoluble Matter (g/m2/month); NS - Not sampled BROWN - indicates sample is contaminated from a Non-Werris Creek Coal dust source YELLOW - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e bird droppings and insects)

# Appendix 3 – Train Dust Deposition Monitoring

|                   | Deposited    |        |                             |        |              |                   |                             |        |              |        |                             | indi   | Tra          | ins    | 2013                        | 3-20   | 14           |        |                             |        |              |        |                             |        |        |
|-------------------|--------------|--------|-----------------------------|--------|--------------|-------------------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------|
|                   |              | DD     | W30                         |        |              | DD                | N20                         |        |              | DD     | W13                         |        |              | DD     | E13                         |        |              | DD     | E20                         |        |              | DD     | E30                         |        | line   |
|                   | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal            | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Guidel |
| April 2013        | 0.8          | 15%    | 45%                         | 40%    | 0.5          | 15%               | 50%                         | 35%    | -            | -      | -                           | -      | 1.0          | 15%    | 45%                         | 15%    | 0.9          | 15%    | 60%                         | 25%    | 0.7          | 5%     | 55%                         | 40%    | 4.0    |
| May 2013          | 1.4          | <1%    | 50%                         | 30%    | 0.7          | <1%               | 90%                         | 10%    | 0.5          | 10%    | 85%                         | 5%     | 0.6          | <1%    | 70%                         | 20%    | 0.9          | <1%    | 30%                         | 60%    | 0.5          | <1%    | 90%                         | 10%    | 4.0    |
| June 2013         | 1.0          | 30%    | 30%                         | 35%    | 0.5          | 40%               | 35%                         | 20%    | -            | -      | -                           | -      | -            | -      | -                           | -      | 0.4          | 30%    | 40%                         | 20%    | 0.8          | 15%    | 50%                         | 15%    | 4.0    |
| July 2013         | 1.0          | 30%    | 40%                         | 20%    | 1.2          | .2 25% 40% 10% 0. |                             |        | 0.9          | 30%    | 20%                         | 10%    | 0.8          | 20%    | 40%                         | 20%    | 1.7          | 20%    | 30%                         | 40%    | 1.6          | 10%    | 25%                         | 30%    | 4.0    |
| August 2013       |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| September 2013    |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| October 2013      |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| November 2013     |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| December 2013     |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| January 2014      |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| February 2014     |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| March 2014        |              |        |                             |        |              |                   |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| ANNUAL AVERAGE    |              | 1      | .1                          |        |              | 0.7               |                             |        |              | 0      | .7                          |        |              | 0      | .8                          |        |              | 1      | .0                          |        |              | 0      | .9                          |        | 4.0    |
| Average Coal %    |              | 25     | .0%                         |        |              | 26.7%             |                             |        | 20           | .0%    |                             |        | 17.          | .5%    |                             |        | 21           | .7%    |                             |        | 10           | .0%    |                             | -      |        |
| Average Coal g/m2 |              | 0.     | 26                          |        |              | 0.19              |                             |        |              | 0.     | 14                          |        |              | 0.     | 14                          |        | 0.21         |        |                             |        |              | 0.     | 09                          |        | -      |
| MINIMUM           |              | 0      | .8                          |        |              | 0.5               |                             | 0.5    |              |        | 0.6                         |        |              | 0.4    |                             |        |              | 0.5    |                             |        | -            |        |                             |        |        |
| MAXIMUM           |              | 1      | .4                          |        |              | 1.2               |                             |        |              | 0.9    |                             |        |              | 1      | .0                          |        |              | 1      | .7                          |        | 1.6          |        |                             |        | 4.0    |

Note: All results are in the form of Insoluble Matter (g/m2/month)

# Appendix 4 – Noise Monitoring Results



1 July 2013

Ref: 04035/4818

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

### RE: JUNE 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Wednesday 19<sup>th</sup> June, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

| Table 1                               |                                                       |      |                                |                                        |  |  |  |  |
|---------------------------------------|-------------------------------------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|
| WCC Attended Noise Monitoring Program |                                                       |      |                                |                                        |  |  |  |  |
| Monitoring Point                      | Duration ID Receiver Relevant Monitoring Requirements |      |                                |                                        |  |  |  |  |
| A                                     | 15 minutes <sup>1</sup>                               | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |
| B1                                    | $60 \text{ minutes}^2$                                | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |
| 101                                   | 00 111110165                                          | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |
| B2                                    | $60 \text{ minutes}^2$                                | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |
| DZ                                    | 00 111110165                                          | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |
| C                                     | 15 minutes <sup>1</sup>                               | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |
| U U                                   |                                                       | R11* | Glenara                        | r livate Agreement                     |  |  |  |  |
| D                                     | 60 minutes <sup>2</sup>                               | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |
| E                                     | 60 minutes <sup>2</sup>                               | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |
| F                                     | 60 minutes <sup>2</sup>                               | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |
| G                                     | 15 minutes <sup>1</sup>                               | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |
| Н                                     | 15 minutes <sup>1</sup>                               | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |
| I                                     | 60 minutes <sup>2</sup>                               | R57  | Kurrara Street <sup>®</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |
| J                                     | 15 minutes <sup>1</sup>                               |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |
| K                                     | 15 minutes <sup>1</sup>                               | R21* | Alco Park                      | Private Agreement                      |  |  |  |  |
| L                                     | 15 minutes <sup>1</sup>                               | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

#### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.



### **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather station M2 which is located on top of the overburden emplacement.

#### WCC Operations

WCC operations on Wednesday 19<sup>th</sup> June 2013 had the 5600 excavator in Strip 16 west at RL380m, 3600 excavator in Strip 13 centre at RL350m; the PC4000 excavator in Strip 13 centre at RL350m and a 1900 excavator in Strip 11 centre at RL270m. The overburden truck fleets were running to the RL390m western dump and in pit dump at RL300m on day and night shift. The 1900 excavator truck fleets were hauling coal to the ROM. The crushing plant operated to 3:30am with no trains loaded.

#### Noise Compliance Assessment

The results of the noise measurements are shown below in **Tables 2** and **3**.

| Table 2                                           |         |        |           |                     |            |                                                    |  |  |
|---------------------------------------------------|---------|--------|-----------|---------------------|------------|----------------------------------------------------|--|--|
| WCC Noise Monitoring Results – 19 June 2013 (Day) |         |        |           |                     |            |                                                    |  |  |
|                                                   |         | dB(A), | Criterion | Inversion           | Wind       |                                                    |  |  |
| Location                                          | Time    | Leq    | dB(A) Leq | <sup>o</sup> C/100m | speed/ dir | Identified Noise Sources                           |  |  |
| A R5 Rosehill                                     | 3:02 pm | 43     | 35        | n/a                 | 5 / 150    | Birds (40), traffic (40), WCC inaudible            |  |  |
| B1 R7 83 Wadwells                                 | 3:37 pm | 45     | 37        | n/a                 | 5 / 166    | Dog (41), tractor (40), wind (38), WCC inaudible   |  |  |
| Lane/R8 Almawillee                                |         |        |           |                     |            |                                                    |  |  |
| B2 R9Gedhurst/ R22                                | 3:21 pm | 49     | 37/36*    | n/a                 | 5 / 166    | Car (48), traffic (39), birds (35), WCC inaudible  |  |  |
| Mountain View                                     |         |        |           |                     |            |                                                    |  |  |
| C R10 Meadholme/                                  | 2:42 pm | 48     | 39        | n/a                 | 5 / 150    | Birds (43), traffic (43), wind (43), WCC inaudible |  |  |
| R11 Glenara                                       |         |        |           |                     |            |                                                    |  |  |
| D R24 Hazeldene                                   | 1:49 pm | 51     | 37        | n/a                 | 5.5 / 172  | Traffic (49), Birds (43), WCC inaudible            |  |  |
| E R12 Railway Cottage                             | 5:13 pm | 48     | 38        | n/a                 | 3.2 / 162  | Traffic (47), birds (41), WCC inaudible            |  |  |
| F R96 Talavera                                    | 2:05 pm | 41     | 38        | n/a                 | 6.1/146    | Wind (41), WCC inaudible                           |  |  |
| <b>G</b> R97                                      | 1:38 pm | 46     | 35        | n/a                 | 6.1/146    | Wind (44), Birds (40), WCC (<30)                   |  |  |
| H R98 Kyooma                                      | 3:11 pm | 42     | 36        | n/a                 | 5 / 166    | Wind 41, traffic (35), WCC inaudible               |  |  |
| I R57 Kurrara St                                  | 5:01 pm | 47     | 35        | n/a                 | 3.2 / 166  | Traffic (43), trains (43), WCC (32)                |  |  |
| J R57 Coronation Ave                              | 4:42 pm | 56     | 35        | n/a                 | 3.7 / 160  | Traffic (54), birds (51), WCC inaudible            |  |  |
| K R21 Alco Park                                   | 4:20 pm | 48     | 39        | n/a                 | 5.3 / 160  | Traffic (48), WCC inaudible                        |  |  |
| L R103                                            | 4:46 pm | 45     | 35        | n/a                 | 3.7 / 160  | Dog (42), traffic (42), WCC (30)                   |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

| Table 3                                                     |          |                     |        |           |                     |            |                                           |  |
|-------------------------------------------------------------|----------|---------------------|--------|-----------|---------------------|------------|-------------------------------------------|--|
| WCC Noise Monitoring Results – 19 June 2013 (Evening/Night) |          |                     |        |           |                     |            |                                           |  |
|                                                             |          | dB(A),              | dB(A), | Criterion | Inversion           | Wind       |                                           |  |
| Location                                                    | Time     | L1                  | Leq    | dB(A) Leq | <sup>o</sup> C/100m | speed/ dir | Identified Noise Sources                  |  |
|                                                             |          | (1min) <sup>1</sup> |        |           |                     |            |                                           |  |
| A R5 Rosehill                                               | 8:48 pm  | n/a                 | 37     | 35        | 4.4                 | 1.5 / 152  | Traffic (36), insects (28), WCC inaudible |  |
| B1 R7 83 Wadwells                                           | 11:58 pm | n/a                 | 30     | 37        | 5.6                 | 0.6 / 145  | Traffic (30), WCC inaudible               |  |
| Lane/R8 Almawillee                                          |          |                     |        |           |                     |            |                                           |  |
| B2 R9Gedhurst/ R22                                          | 7:47 pm  | n/a                 | 32     | 37/36*    | 5.1                 | 1.6 / 133  | Traffic (30), horse (25), WCC inaudible   |  |
| Mountain View                                               | -        |                     |        |           |                     |            |                                           |  |
| C R10 Meadholme/                                            | 9:09 pm  | n/a                 | 36     | 39        | 5.7                 | 1.5 / 149  | Traffic (35), frogs (27), WCC inaudible   |  |
| R11 Glenara                                                 |          |                     |        |           |                     |            |                                           |  |
| D R24 Hazeldene                                             | 9:27 pm  | n/a                 | 42     | 37        | 5.5                 | 1.6 / 137  | Traffic (42), WCC inaudible               |  |
| E R12 Railway Cottage                                       | 11:26 pm | n/a                 | 38     | 38        | 6.2                 | 1.9 / 161  | Traffic (37), insects (28), WCC inaudible |  |
| F R96 Talavera                                              | 9:18 pm  | 28                  | 30     | 37        | 5.5                 | 1.5 / 149  | Traffic (28), WCC (24)                    |  |
| <b>G</b> R97                                                | 8:26 pm  | 41                  | 35     | 35        | 6.2                 | 1.2 / 139  | WCC (35)                                  |  |
| H R98 Kyooma                                                | 8:51 pm  | 30                  | 38     | 36        | 6.1                 | 1.5 / 149  | Dog (38), <b>WCC (26)</b>                 |  |
| I R57 Kurrara St                                            | 11:40 pm | 43                  | 44     | 35        | 6.1                 | 1/167      | Trains (43), WCC (34)                     |  |
| J R57 Coronation Ave                                        | 10:47 pm | <35                 | 50     | 35        | 6.5                 | 1.7 / 152  | Train (49), traffic (41), WCC (<30)       |  |
| K R21 Alco Park                                             | 10:23 pm | 41                  | 44     | 37        | 6.5                 | 1.7 / 142  | Trains (42), WCC (38)                     |  |
| L R103                                                      | 7:52 pm  | n/a                 | 54     | 35        | 5.1                 | 1.6 / 133  | Dog (54), train (42), WCC inaudible       |  |

1. L1 (1 min) from mine noise only.

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period except at R21 "Alco Park" where a mine noise contribution 1 dB above the noise criterion was recorded during the night time measurement. This noise level does not





constitute an exceedance or breach of a license condition since, in accordance with Condition 1 of Schedule 3 of PA10\_0059, there is an agreement in place with this receiver allowing for mine noise levels up to 40dB(A).

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.



USTICS

No plant noise tests were conducted during the June survey.

We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Perit

Neil Pennington Acoustical Consultant

Review:

as

Ross Hodge Acoustical Consultant



SPECTRUMACOUSTICS

### Appendix I



Attended Noise Monitoring Locations





### Appendix II

Noise Limits

| Location                       |                               | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|--------------------------------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|                                |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7                             | 83 Wadwells Lane              | ells Lane 37               |                            | 45                    | 35                          | 40                         |
| R9                             | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12                            | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22                            | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24                            | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96 "Talavera" <sup>#</sup>    |                               | 38                         | 37                         | 45                    | 35                          | 40                         |
| All other privately-owned land |                               | 35                         | 35                         | 45                    | 35                          | 40                         |

### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |  |  |
|-----|----------------|-----------------------------------|-----------------------------------------|--|--|
| R8  | "Almawillee"   | 40                                | 45                                      |  |  |
| R10 | "Meadholme"    | 40                                | 45                                      |  |  |
| R11 | "Glenara"      | 40                                | 45                                      |  |  |
| R20 | "Tonsley Park" | 40                                | 45                                      |  |  |
| R21 | "Alco Park"    | 40                                | 45                                      |  |  |
| R98 | "Kyooma"       | 40                                | 45                                      |  |  |

#### Table 21: Properties with Private Agreements Noise Criteria





### Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       | EA SWLs                   |                           |            | dB(A)      | Data Maggurad |  |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|--|
| Туре                                                                        | No.   | Leq                       | Lmax                      | aB(A) Leq  | Lmax       | Date measured |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |  |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 116        | 119        | 6/2/13        |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |  |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |  |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |  |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |  |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |  |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |  |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |  |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |  |
| Excavator (PC4000)                                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |  |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)                 | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |  |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |  |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |  |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.





20 May 2013

Ref: 04035/4757

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

### RE: MAY 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Tuesday 14th May, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

| Table 1                               |                                                       |      |                                |                                        |  |  |  |  |
|---------------------------------------|-------------------------------------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|
| WCC Attended Noise Monitoring Program |                                                       |      |                                |                                        |  |  |  |  |
| Monitoring Point                      | Duration ID Receiver Relevant Monitoring Requirements |      |                                |                                        |  |  |  |  |
| A                                     | 15 minutes <sup>1</sup>                               | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |
| B1                                    | $60 \text{ minutes}^2$                                | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |
| 101                                   | 00 111110165                                          | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |
| B2                                    | $60 \text{ minutes}^2$                                | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |
| DZ                                    | 00 111110165                                          | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |
| C                                     | 15 minutes <sup>1</sup>                               | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |
| U U                                   |                                                       | R11* | Glenara                        | r livate Agreement                     |  |  |  |  |
| D                                     | 60 minutes <sup>2</sup>                               | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |
| E                                     | 60 minutes <sup>2</sup>                               | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |
| F                                     | 60 minutes <sup>2</sup>                               | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |
| G                                     | 15 minutes <sup>1</sup>                               | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |
| Н                                     | 15 minutes <sup>1</sup>                               | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |
| I                                     | 60 minutes <sup>2</sup>                               | R57  | Kurrara Street <sup>®</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |
| J                                     | 15 minutes <sup>1</sup>                               |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |
| K                                     | 15 minutes <sup>1</sup>                               | R21* | Alco Park                      | Private Agreement                      |  |  |  |  |
| L                                     | 15 minutes <sup>1</sup>                               | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is




required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

# **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather stations.

## WCC Operations

WCC operations on 14<sup>th</sup> May 2013 had the 3600 excavator in Strip 12 centre at RL300m; the PC4000 excavator in Strip 11 centre at RL280m; a 1900 excavator in Strip 13 west at RL390m and two 1900 excavators in Strip 11 east at RL290m. The overburden truck fleets were running to the RL390m western dump on day and night shift. While the two 1900 excavator truck fleets were hauling coal to the ROM. The crushing plant operated to 3:30am with no trains loaded.

## Noise Compliance Assessment

The results of the noise measurements are shown below in **Tables 2** and **3**.



|                                     | Table 2 |        |              |                     |               |                                                    |  |  |  |  |
|-------------------------------------|---------|--------|--------------|---------------------|---------------|----------------------------------------------------|--|--|--|--|
|                                     |         | W      | CC Noise Mon | itoring Results -   | - 14 May 2013 | (Day)                                              |  |  |  |  |
|                                     |         | dB(A), | Criterion    | Inversion           | Wind          |                                                    |  |  |  |  |
| Location                            | Time    | Leq    | dB(A) Leq    | <sup>o</sup> C/100m | speed/ dir    | Identified Noise Sources                           |  |  |  |  |
| A R5 Rosehill                       | 2:15 pm | 41     | 35           | n/a                 | 5.2/331       | Birds & insects (39), traffic (36), WCC inaudible  |  |  |  |  |
| B1 R7 83 Wadwells                   | 1:15 pm | 43     | 37           | n/a                 | 5.4/326       | Birds & insects (41), traffic (36), wind (35), WCC |  |  |  |  |
| Lane/R8 Almawillee                  |         |        |              |                     |               | Inaudible                                          |  |  |  |  |
| B2 R9Gedhurst/ R22<br>Mountain View | 1:10 pm | 44     | 37/36*       | n/a                 | 5.4/326       | Birds & insects (44), WCC barely audible           |  |  |  |  |
| C R10 Meadholme/                    | 2:35 pm | 38     | 39           | n/a                 | 5.7/319       | Birds & insects (36), traffic (34), WCC barely     |  |  |  |  |
| R11 Glenara                         |         |        |              |                     |               | audible                                            |  |  |  |  |
| D R24 Hazeldene                     | 2:53 pm | 42     | 37           | n/a                 | 4.8/323       | Birds & insects (40), traffic (39), WCC barely     |  |  |  |  |
|                                     |         |        |              |                     |               | audible                                            |  |  |  |  |
| E R12 Railway Cottage               | 4:30 pm | 49     | 38           | n/a                 | 4.3/310       | Traffic (48), rail works (40), WCC inaudible       |  |  |  |  |
| F R96 Talavera                      | 3:59 pm | 46     | 38           | n/a                 | 4.4/318       | Birds & insects (46), traffic (36), WCC (34)       |  |  |  |  |
| <b>G</b> R97                        | 3:12 pm | 37     | 35           | n/a                 | 5.0/336       | Birds & insects (34), WCC (34), traffic (27)       |  |  |  |  |
| H R98 Kyooma                        | 3:34 pm | 40     | 36           | n/a                 | 4.7/317       | Wind (36), birds & insects (34), WCC (33), traffic |  |  |  |  |
|                                     |         |        |              |                     |               | (30)                                               |  |  |  |  |
| I R57 Kurrara St                    | 4:50 pm | 48     | 35           | n/a                 | 4.0/308       | Traffic (46), birds & insects (43), WCC inaudible  |  |  |  |  |
| J R57 Coronation Ave                | 2:44 pm | 55     | 35           | n/a                 | 5.1/330       | Traffic (55), birds & insects (46), domestic noise |  |  |  |  |
|                                     |         |        |              |                     |               | (40), WCC inaudible                                |  |  |  |  |
| K R21 Alco Park                     | 4:02 pm | 45     | 35           | n/a                 | 4.6/324       | Birds & insects (43), traffic (42), WCC inaudible  |  |  |  |  |
| L R103                              | 4:22 pm | 51     | 35           | n/a                 | 4.1/315       | Birds & insects (50), traffic (44), WCC inaudible  |  |  |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

| Table 3               |                                                            |                     |        |           |                     |            |                                              |  |  |  |  |  |
|-----------------------|------------------------------------------------------------|---------------------|--------|-----------|---------------------|------------|----------------------------------------------|--|--|--|--|--|
|                       | WCC Noise Monitoring Results – 14 May 2013 (Evening/Night) |                     |        |           |                     |            |                                              |  |  |  |  |  |
|                       |                                                            | dB(A),              | dB(A), | Criterion | Inversion           | Wind       |                                              |  |  |  |  |  |
| Location              | Time                                                       | L1                  | Leq    | dB(A) Leq | <sup>0</sup> C/100m | speed/ dir | Identified Noise Sources                     |  |  |  |  |  |
|                       |                                                            | (1min) <sup>1</sup> |        |           |                     |            |                                              |  |  |  |  |  |
| A R5 Rosehill         | 7:33 pm                                                    | n/a                 | 31     | 35        | +3.6                | 0.6/203    | Traffic (31), WCC inaudible                  |  |  |  |  |  |
| B1 R7 83 Wadwells     | 7:40 pm                                                    | n/a                 | 32     | 37        | +4.8                | 0.8/231    | Traffic (32), insects 22, WCC barely audible |  |  |  |  |  |
| Lane/R8 Almawillee    |                                                            |                     |        |           |                     |            |                                              |  |  |  |  |  |
| B2 R9Gedhurst/ R22    | 7:53 pm                                                    | n/a                 | 30     | 37/36*    | +5.4                | 0.8/231    | Traffic (30), WCC inaudible                  |  |  |  |  |  |
| Mountain View         |                                                            |                     |        |           |                     |            |                                              |  |  |  |  |  |
| C R10 Meadholme/      | 8:55 pm                                                    | n/a                 | 33     | 39        | +6.3                | 0.8/261    | Traffic (33), WCC inaudible                  |  |  |  |  |  |
| R11 Glenara           |                                                            |                     |        |           |                     |            |                                              |  |  |  |  |  |
| D R24 Hazeldene       | 9:13 pm                                                    | n/a                 | 33     | 37        | +6.8                | 2.7/337    | Traffic (33), WCC barely audible             |  |  |  |  |  |
| E R12 Railway Cottage | 12:03 am                                                   | 37                  | 41     | 38        | +7.4                | 2.7/3.0    | Traffic (41), WCC (27)                       |  |  |  |  |  |
| F R96 Talavera        | 10:49 pm                                                   | 40                  | 34     | 37        | +7.0                | 3.3/358    | WCC (34)                                     |  |  |  |  |  |
| <b>G</b> R97          | 9:44 pm                                                    | 37                  | 30     | 35        | +6.8                | 3.9/340    | WCC (30)                                     |  |  |  |  |  |
| H R98 Kyooma          | 10:17 pm                                                   | 42                  | 36     | 36        | +5.3                | 3.6/344    | WCC (36)                                     |  |  |  |  |  |
| I R57 Kurrara St      | 11:00 pm                                                   | 39                  | 36     | 35        | +7.2                | 3.3/358    | Traffic (32), WCC (32), train (28)           |  |  |  |  |  |
| J R57 Coronation Ave  | 9:08 pm                                                    | 40                  | 37     | 35        | +6.6                | 0.7/288    | Traffic (33), WCC (32), dogs (31)            |  |  |  |  |  |
| K R21 Alco Park       | 10:20 pm                                                   | 35                  | 32     |           | +5.6                | 3.6/344    | Traffic (29), WCC (27)                       |  |  |  |  |  |
| L R103                | 10:38 pm                                                   | 30                  | 31     | 35        | +6.2                | 3.5/350    | Traffic (27), WCC (27), train (26)           |  |  |  |  |  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.



The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels did not exceed the relevant noise criterion at each monitoring location during each monitoring period.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

## Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.







We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Ponte

Neil Pennington Acoustical Consultant

Review:

Van

Ross Hodge Acoustical Consultant



SPECTRUM COUSTICS

# Appendix I



Attended Noise Monitoring Locations





# Appendix II

Noise Limits

|          | Location                      | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|----------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
| Eocation |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7       | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9       | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12      | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22      | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24      | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96      | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c    | other privately-owned land    | 35                         | 35                         | 45                    | 35                          | 40                         |

# LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |
|-----|----------------|-----------------------------------|-----------------------------------------|
| R8  | "Almawillee"   | 40                                | 45                                      |
| R10 | "Meadholme"    | 40                                | 45                                      |
| R11 | "Glenara"      | 40                                | 45                                      |
| R20 | "Tonsley Park" | 40                                | 45                                      |
| R21 | "Alco Park"    | 40                                | 45                                      |
| R98 | "Kyooma"       | 40                                | 45                                      |

#### Table 21: Properties with Private Agreements Noise Criteria



# Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       | EA S                      | SWLs                      | dB(A) Log  | dB(A)      | Date Measured |  |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|--|
| Туре                                                                        | No.   | Leq                       | Lmax                      | ub(A) Leq  | Lmax       | Date Measured |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |  |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 116        | 119        | 6/2/13        |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 602   | 108                       | 116                       | 119        |            | 14/5/13       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 612   | 108                       | 116                       | 120        |            | 14/5/13       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 613   | 108                       | 116                       | 121        |            | 14/5/13       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 623   | 108                       | 116                       | 122        |            | 14/5/13       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 624   | 108                       | 116                       | 120        |            | 14/5/13       |  |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |  |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |  |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |  |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |  |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |  |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |  |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |  |
| Excavator (PC4000)                                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |  |
| Excavator (Mitsubishi<br>engine)                                            | EX543 | 116                       | 120                       | 116        |            | 14/5/13       |  |
| Excavator (Cummins<br>engine)                                               | EX542 | 116                       | 120                       | 113        |            | 14/5/13       |  |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)                 | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |  |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |  |





| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) |         | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13  |
|----------------------------------------------------------------------------|---------|---------------------------|---------------------------|------------|------------|---------|
| Drill                                                                      | DR523   | 116                       |                           | 119        |            | 14/5/13 |
| Drill                                                                      | CJC 837 | 116                       |                           | 113        |            | 14/5/13 |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.





23 July 2013

Ref: 04035/4818

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

# RE: JULY 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Thursday 11<sup>th</sup> July, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

# Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

|                                       | Table 1                                                                |                              |                                |                                        |                   |  |  |  |  |  |
|---------------------------------------|------------------------------------------------------------------------|------------------------------|--------------------------------|----------------------------------------|-------------------|--|--|--|--|--|
| WCC Attended Noise Monitoring Program |                                                                        |                              |                                |                                        |                   |  |  |  |  |  |
| Monitoring Point                      | Nonitoring Point Duration ID Receiver Relevant Monitoring Requirements |                              |                                |                                        |                   |  |  |  |  |  |
| A                                     | 15 minutes <sup>1</sup>                                                | R5                           | Rosehill                       | PA10_0059 Private Property outside NMZ |                   |  |  |  |  |  |
| B1                                    | $60 \text{ minutes}^2$                                                 | R7                           | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |                   |  |  |  |  |  |
|                                       | 00 111110165                                                           | R8*                          | Almawillee                     | Private Agreement                      |                   |  |  |  |  |  |
| B2                                    | $60 \text{ minutes}^2$                                                 | R9                           | Gedhurst                       | 60 minutes as per EPL 12290            |                   |  |  |  |  |  |
| DZ                                    | 00 minutes                                                             | R22                          | Mountain View                  | 60 minutes as per EPL 12290            |                   |  |  |  |  |  |
| C                                     | 15 minutes <sup>1</sup>                                                | 15 minutes <sup>1</sup> R10* |                                | Meadholme                              | Private Agreement |  |  |  |  |  |
| C                                     |                                                                        | R11*                         | Glenara                        | Flivate Agreement                      |                   |  |  |  |  |  |
| D                                     | 60 minutes <sup>2</sup>                                                | R24                          | Hazeldene                      | 60 minutes as per EPL 12290            |                   |  |  |  |  |  |
| E                                     | 60 minutes <sup>2</sup>                                                | R12                          | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |                   |  |  |  |  |  |
| F                                     | 60 minutes <sup>2</sup>                                                | R96                          | Talavera                       | 60 minutes as per EPL 12290            |                   |  |  |  |  |  |
| G                                     | 15 minutes <sup>1</sup>                                                | R97                          |                                | PA10_0059 Private Property outside NMZ |                   |  |  |  |  |  |
| Н                                     | 15 minutes <sup>1</sup>                                                | R98*                         | Kyooma                         | Private Agreement                      |                   |  |  |  |  |  |
| I                                     | 60 minutes <sup>2</sup>                                                | R57                          | Kurrara Street <sup>®</sup>    | 60 minutes as per EPL 12290            |                   |  |  |  |  |  |
| J                                     | 15 minutes <sup>1</sup>                                                |                              | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |                   |  |  |  |  |  |
| К                                     | 15 minutes <sup>1</sup>                                                | R21*                         | Alco Park                      | Private Agreement                      |                   |  |  |  |  |  |
| L                                     | 15 minutes <sup>1</sup>                                                | R103                         |                                | PA10_0059 Private Property outside NMZ |                   |  |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

## Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.



# **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather station M2 which is located on top of the overburden emplacement.

#### WCC Operations

WCC operations on Thursday 11<sup>th</sup> July 2013 had the 5600 excavator in Strip 15 centre at RL390m, 3600 excavator in Strip 13 centre at RL350m; a 1900 excavator in Strip 15 east at RL370m and a 1900 excavator in Strip 12 centre at RL310m. Day and night shift initially had the overburden truck fleets running to the RL390m western (out of pit) dump and truck fleets coaling from Strip 12 were hauling coal to the ROM. After 10:30pm, the Noise Control Operator contacted the Open Cut Examiner (OCE) indicating that the 5 minute noise levels were over 35dBA due to mining noise with the OCE responding by directing all CAT 785 trucks to the in pit dump at RL300m and maintaining the attenuated CAT 793 trucks to the western dump. At 11pm, the 5 minute noise levels were again over 35dBA due to mining noise so the OCE called an early crib (night shift lunch break) and the entire operation was suspended for an hour. The crushing plant operated to 3:30am with no trains loaded.

#### Noise Compliance Assessment

The results of the noise measurements are shown below in **Tables 2** and **3**.





|                       | Table 2                                           |        |           |           |                                 |                                                      |  |  |  |  |
|-----------------------|---------------------------------------------------|--------|-----------|-----------|---------------------------------|------------------------------------------------------|--|--|--|--|
|                       | WCC Noise Monitoring Results – 11 July 2013 (Day) |        |           |           |                                 |                                                      |  |  |  |  |
|                       |                                                   | dB(A), | Criterion | Inversion | Wind                            |                                                      |  |  |  |  |
| Location              | lime                                              | Leq    | dB(A) Leq | °C/100m   | speed<br>(m/s)/dir <sup>o</sup> | Identified Noise Sources                             |  |  |  |  |
| A R5 Rosehill         | 1.22 pm                                           | 35     | 35        | n/a       | 1.1/176                         | Birds & insects (35), traffic (20), WCC inaudible    |  |  |  |  |
| B1 R7 83 Wadwells     | 1.20 pm                                           | 43     | 37        | n/a       | 1.7/207                         | Birds & insects (40), traffic (37), domestic noise   |  |  |  |  |
| Lane/R8 Almawillee    |                                                   |        |           |           |                                 | (36), WCC inaudible                                  |  |  |  |  |
| B2 R9Gedhurst/ R22    | 1.41 pm                                           | 34     | 37/36*    | n/a       | 1.9/244                         | Birds & insects (33), traffic (25), WCC (20)         |  |  |  |  |
| Mountain View         |                                                   |        |           |           |                                 |                                                      |  |  |  |  |
| C R10 Meadholme/      | 3.50 pm                                           | 39     | 39        | n/a       | 3.7/191                         | Traffic (38), birds & insects (32), WCC inaudible    |  |  |  |  |
| R11 Glenara           |                                                   |        |           |           |                                 |                                                      |  |  |  |  |
| D R24 Hazeldene       | 2.44 pm                                           | 39     | 37        | n/a       | 2.4/231                         | Traffic (38), birds & insects (30), WCC inaudible    |  |  |  |  |
| E R12 Railway Cottage | 4.57 pm                                           | 48     | 38        | n/a       | 3.4/224                         | Traffic (48), birds & insects (30), WCC inaudible    |  |  |  |  |
| F R96 Talavera        | 3.45 pm                                           | 38     | 38        | n/a       | 3.4/200                         | Birds & insects (38), traffic (28), WCC inaudible    |  |  |  |  |
| <b>G</b> R97          | 3.00 pm                                           | 33     | 35        | n/a       | 2.2/203                         | Birds & insects (33), WCC inaudible                  |  |  |  |  |
| H R98 Kyooma          | 3.20 pm                                           | 36     | 36        | n/a       | 2.1/225                         | Birds & insects (35), WCC (25)                       |  |  |  |  |
| I R57 Kurrara St      | 4.49 pm                                           | 45     | 35        | n/a       | 3.1/223                         | Trains (43), traffic (40), birds & insects (33), WCC |  |  |  |  |
|                       |                                                   |        |           |           |                                 | inaudible                                            |  |  |  |  |
| J R57 Coronation Ave  | 2.33 pm                                           | 35     | 35        | n/a       | 1.0/231                         | Traffic (34), birds (27), WCC inaudible              |  |  |  |  |
| K R21 Alco Park       | 4.12 pm                                           | 42     | 39        | n/a       | 3.5/203                         | Traffic (41), farm activities (35), WCC inaudible    |  |  |  |  |
| L R103                | 4.30 pm                                           | 44     | 35        | n/a       | 2.7/214                         | Train (44), WCC inaudible                            |  |  |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

|                                             | Table 3                                                     |                                     |               |                        |                                  |                                         |                                                 |  |  |  |  |  |
|---------------------------------------------|-------------------------------------------------------------|-------------------------------------|---------------|------------------------|----------------------------------|-----------------------------------------|-------------------------------------------------|--|--|--|--|--|
|                                             | WCC Noise Monitoring Results – 11 July 2013 (Evening/Night) |                                     |               |                        |                                  |                                         |                                                 |  |  |  |  |  |
| Location                                    | Time                                                        | dB(A),<br>L1<br>(1min) <sup>1</sup> | dB(A),<br>Leq | Criterion<br>dB(A) Leq | Inversion<br><sup>o</sup> C/100m | Wind<br>speed<br>(m/s)/dir <sup>0</sup> | Identified Noise Sources                        |  |  |  |  |  |
| A R5 Rosehill                               | 9:24 pm                                                     | 43                                  | 39            | 35                     | +3.6                             | 1.6/200                                 | WCC (36), insects (34), traffic (30)            |  |  |  |  |  |
| <b>B1</b> R7 83 Wadwells Lane/R8 Almawillee | 9:50 pm                                                     | 43                                  | 38            | 37                     | +4.9                             | 1.4/197                                 | WCC (37), traffic (31), insects (25)            |  |  |  |  |  |
| B2 R9Gedhurst/ R22<br>Mountain View         | 9:44 pm                                                     | 44                                  | 41            | 37/36*                 | +4.9                             | 1.3/196                                 | WCC (39), insects (34), traffic (33)            |  |  |  |  |  |
| C R10 Meadholme/<br>R11 Glenara             | 11:07 pm                                                    | 44                                  | 39            | 39                     | +6.7                             | 1.0/256                                 | WCC (38), traffic (30), insects (28)            |  |  |  |  |  |
| D R24 Hazeldene                             | 10:47 pm                                                    | 40                                  | 34            | 37                     | +6.2                             | 1.3/281                                 | WCC (34)                                        |  |  |  |  |  |
| E R12 Railway Cottage                       | 11:06 pm                                                    | 36                                  | 33            | 38                     | +6.1                             | 1.5/264                                 | Traffic (32), WCC (31), birds (18)              |  |  |  |  |  |
| F R96 Talavera                              | 8:30 pm                                                     | n/a                                 | 26            | 37                     | +4.2                             | 1.8/207                                 | Traffic (26), WCC barely audible                |  |  |  |  |  |
| <b>G</b> R97                                | 7:40 pm                                                     | n/a                                 | 22            | 35                     | +4.2                             | 1.8/155                                 | Insects (22), WCC inaudible                     |  |  |  |  |  |
| H R98 Kyooma                                | 8:03 pm                                                     | n/a                                 | 31            | 36                     | +4.8                             | 1.6/156                                 | Insects (31), WCC inaudible                     |  |  |  |  |  |
| I R57 Kurrara St                            | 8:03 pm                                                     | n/a                                 | 43            | 35                     | +4.7                             | 1.7/193                                 | Trains (43), traffic (32), WCC barely audible   |  |  |  |  |  |
| J R57 Coronation Ave                        | 7:20 pm                                                     | 38                                  | 42            | 35                     | +3.0                             | 2.1/159                                 | Traffic (39), dogs (38), WCC (30), insects (28) |  |  |  |  |  |
| K R21 Alco Park                             | 7:20 pm                                                     | 36                                  | 40            | 37                     | +3.0                             | 2.1/159                                 | Traffic (39), WCC (33)                          |  |  |  |  |  |
| L R103                                      | 7:40 pm                                                     | n/a                                 | 49            | 35                     | +4.2                             | 1.8/155                                 | Train (49), WCC inaudible                       |  |  |  |  |  |

1. L1 (1 min) from mine noise only.

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels were below the relevant noise criterion at each monitoring location during each monitoring period except at R5 "Rosehill" where a mine noise contribution 1 dB above the





noise criterion was recorded during the night time measurement and at R9/R22 where a mine noise contribution 2 to 3 dB above the noise criterion was recorded also during the night time measurement. That is, due to the close proximity of the residences at Gedhurst and Mountain View a single noise measurement is made which is considered representative of the noise environment at both. On the basis of the different criterion at each residence the exceedance is 2db at Gedhurst and 3 dB at Mountain View.

It is noted that an exceedance of less than 2 dB (A) above a statutory noise limit specified in a licence condition is not considered to be a non-compliance as per the discussion in Section 11.1.3 of the NSW Industrial Noise Policy.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

# Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working





throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.

No plant noise tests were conducted during the July survey.

We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Ponite

Neil Pennington Acoustical Consultant

Review:

Ross Hodge Acoustical Consultant



SPECTRUM ACOUSTICS

# Appendix I



Attended Noise Monitoring Locations





# Appendix II

Noise Limits

|          | Location                      | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|----------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
| Eocation |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7       | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9       | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12      | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22      | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24      | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96      | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c    | other privately-owned land    | 35                         | 35                         | 45                    | 35                          | 40                         |

# LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |
|-----|----------------|-----------------------------------|-----------------------------------------|
| R8  | "Almawillee"   | 40                                | 45                                      |
| R10 | "Meadholme"    | 40                                | 45                                      |
| R11 | "Glenara"      | 40                                | 45                                      |
| R20 | "Tonsley Park" | 40                                | 45                                      |
| R21 | "Alco Park"    | 40                                | 45                                      |
| R98 | "Kyooma"       | 40                                | 45                                      |

#### Table 21: Properties with Private Agreements Noise Criteria





# Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       | EA S                      | WLs                       |            | dB(A)      | Dete Measured |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|
| Туре                                                                        | No.   | Leq                       | Lmax                      | dB(A) Leq  | Lmax       | Date Measured |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 116        | 119        | 6/2/13        |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 117        | 120        | 11/9/12       |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |
| Excavator (PC4000)                                                          | EX837 | 116                       | 120                       | 115        |            | 18/12/12      |
| Dozer D10T (2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)                 | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  |       | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.



# Appendix 5 – Blasting Monitoring Results

| Shot       |            | Time       |                                            | _                                       |            |         |            |         |            |          | W          | ERRIS CR | EEK COAL E<br>MAY 20 | BLASTING | RESULTS   |           |            |                   |           |     |          |
|------------|------------|------------|--------------------------------------------|-----------------------------------------|------------|---------|------------|---------|------------|----------|------------|----------|----------------------|----------|-----------|-----------|------------|-------------------|-----------|-----|----------|
| number     | Date fired | Fired      | Location                                   | Туре                                    | Glenar     | ra R11  | Tonsley F  | ark R20 | Werris Cr  | reek R62 | Talaver    | a R96    | COMPL                | IANCE    | ARTC      | Culvert   | COMPLIANCE | TEMPERATURE       | WIN       | ID  | FUME     |
|            |            |            |                                            |                                         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s)           | OP (dB)  | Vib (mm/s | ) OP (dB) | Vib (mm/s) | Inversion oC/100m | Direction | m/s | 0 to 5   |
| 2013-30    | 1/05/2013  | 13:12      | S13_6-8_Decoal/350 UG collapse             | IB                                      | 0.24       | 106.7   | 0.30       | 101.6   | 0.34       | 94.4     | 0.08       | 115.8    | 10.00                | 120.0    | 0.30      | -         | 50.00      | -3.2              | 354       | 5.3 | 0        |
| 2013-31    | 3/05/2013  | 13:12      | S14_22-23_370 TSB29                        | TSB                                     | 0.26       | 98.3    | 1.05       | 102.6   | 0.37       | 102.6    | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.8              | 297       | 2.5 | 0        |
| 2013-32    | 8/05/2013  | 12:11      | S15_9-11_370                               | OB                                      | <0.25      | <109.8  | 0.59       | 105.8   | <0.25      | <109.8   | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.8              | 213       | 1.1 | 1        |
| 2013-33    | 13/05/2013 | 13:23      | S13_13-14_A1 Coal                          | OB                                      | 0.18       | 102.1   | 0.90       | 98.9    | 0.32       | 98.3     | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -3.2              | 320       | 5.4 | 0        |
| 2013-34    | 16/05/2013 | 13:12      | S14_22-23_Ramp TSB                         | TSB                                     | <0.25      | <109.8  | 0.35       | 110.1   | 0.08       | 111.3    | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.3              | 295       | 3.5 | 0        |
| 2013-35    | 17/05/2013 | 13:21      | S15_17-18_385                              | OB                                      | <0.25      | <109.8  | 0.87       | 100.0   | 0.20       | 109.0    | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -3.3              | 285       | 5.4 | 0        |
| 2013-36    | 22/05/2013 | 12:17      | S13_4-5_360 trim                           | OB                                      | <0.25      | <109.8  | 0.37       | 95.0    | 0.12       | 98.5     | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -1.2              | 218       | 0.3 | 0        |
| 2013-37    | 23/05/2013 | 10:17      | S14_15-20_ramp                             | OB                                      | <0.25      | <109.8  | 1.12       | 106.0   | 0.49       | 104.0    | 0.18       | 97.6     | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -1.9              | 175       | 5.3 | 0        |
| 2013-38    | 28/05/2013 | 13:10      | Seed Wave Trial Blast                      | -                                       | 0.38       | 87.8    | 0.40       | 87.3    | <0.25      | <109.8   | 0.13       | 92.9     | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.3              | 138       | 1.8 | 0        |
| TOTALS     | MAY 2013   | # BLAST    | 17                                         | AVERAGE                                 | 0.27       | 98.7    | 0.66       | 100.8   | 0.27       | 102.6    | 0.13       | 102.1    | 5.00                 | 115.0    |           |           |            |                   |           |     |          |
| TOTALS     | MAY 2013   | # BLAST    | 17                                         | HIGHEST                                 | 0.38       | 106.7   | 1.12       | 110.1   | 0.49       | 111.3    | 0.18       | 115.8    | 10.00                | 120.0    |           |           |            |                   |           |     |          |
| TOTALS     | ANNUAL     | # BLAST    | 17                                         | AVERAGE                                 | 0.26       | 100.6   | 0.78       | 101.7   | 0.47       | 103.2    | 0.13       | 102.1    | 5.00                 | 115.0    |           |           |            |                   |           |     |          |
| TOTALS     | ANNUAL     | %          | >115dB(L) or 5mm/s                         | 17                                      | 0%         | 0%      | 0%         | 0%      | 0%         | 0%       | 0%         | 6%       | 5%                   | 5%       |           |           |            |                   |           |     |          |
|            |            |            |                                            |                                         |            |         |            |         |            |          | W          | ERRIS CR | EEK COAL E           | BLASTING | RESULTS   |           |            |                   |           |     |          |
| Shot       | Date fired | Time       | Location                                   | Type                                    |            |         |            |         |            |          |            |          | JUNE 2               | 013      |           |           |            |                   |           |     |          |
| number     | Dato mou   | Fired      | Loodion                                    | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Glenar     | ra R11  | Tonsley F  | ark R20 | Werris Cr  | reek R62 | Talaver    | a R96    | COMPL                | IANCE    | ARTC      | Culvert   | COMPLIANCE | TEMPERATURE       | WIN       | ID  | FUME     |
|            |            |            |                                            |                                         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s)           | OP (dB)  | Vib (mm/s | ) OP (dB) | Vib (mm/s) | Inversion oC/100m | Direction | m/s | 0 to 5   |
| 2013-39&40 | 5/06/2013  | 12:17      | S13_3-4_350 trim & S16_8-11_385 pt 1       | IB/OB                                   | <0.25      | <109.8  | 0.58       | 102.0   | <0.25      | <109.8   | 0.21       | 106.0    | 10.00                | 120.0    | <0.25     | -         | 50.00      | -2.6              | 347       | 4.7 | 1        |
| 2013-41    | 6/06/2013  | 15:08      | S15_12-18_Blackseam                        | OB                                      | <0.25      | <109.8  | 1.05       | 104.0   | 0.32       | 102.6    | 0.24       | 109.1    | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -1.9              | 307       | 3.2 | 0        |
| 2013-42&43 | 7/06/2013  | 11:53      | S11_17-19_Gcoal & S12_18_290 TSB secondary | IB/TSB                                  | <0.25      | <109.8  | 0.45       | 97.6    | <0.25      | <109.8   | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -1.6              | 342       | 5.8 | 0        |
| 2013-44    | 18/06/2013 | 13:11      | S16_8-11_385 Pt2                           | OB                                      | 0.21       | 102.1   | 1.75       | 108     | 0.47       | 106.1    | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -3.2              | 304       | 2.9 | 1        |
| 2013-45&46 | 21/06/2013 | 13:20      | S12_15-17_280 TSB34 & S13_4-5_350 Trim Pt2 | TSB                                     | 0.24       | 98.7    | 0.95       | 102.3   | 0.32       | 101.6    | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -3.1              | 222       | 1.7 | 0        |
| 2013-47    | 27/06/2013 | 13:33      | S12_12-13_ramp TSB33                       | TSB                                     | <0.25      | <109.8  | 0.58       | 97.9    | 0.18       | 96.9     | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -1.8              | 173       | 1.9 | 0        |
| TOTALS     | JUNE 2013  | # BLAST    | 23                                         | AVERAGE                                 | 0.23       | 100.4   | 0.89       | 102.0   | 0.32       | 101.8    | 0.23       | 107.6    | 5.00                 | 115.0    |           |           |            |                   |           |     |          |
| TOTALS     | JUNE 2013  | # BLAST    | 23                                         | HIGHEST                                 | 0.24       | 102.1   | 1.75       | 108.0   | 0.47       | 106.1    | 0.24       | 109.1    | 10.00                | 120.0    |           |           |            |                   |           |     |          |
| TOTALS     | ANNUAL     | # BLAST    | 23                                         | AVERAGE                                 | 0.25       | 100.51  | 0.82       | 101.8   | 0.42       | 102.8    | 0.18       | 104.8    | 5.00                 | 115.0    |           |           |            |                   |           |     |          |
| TOTALS     | ANNUAL     | %          | >115dB(L) or 5mm/s                         | 23                                      | 0%         | 0%      | 0%         | 0%      | 0%         | 0%       | 0%         | 4.3%     | 5%                   | 5%       |           |           |            |                   |           |     |          |
|            |            | <b>T</b> ' |                                            |                                         |            |         |            |         |            |          | v          | ERRISCR  |                      | SLASTING | RESULIS   |           |            |                   |           |     |          |
| Shot       | Date fired | Fired      | Location                                   | Туре                                    | Glonar     | n P11   | Tonelov    | ark P20 | Worris Cr  | rook P62 | Talayo     | a P06    | COMPL                |          | APTC      | Culvert   |            | TEMPERATURE       | \\/IN     |     | ELIME    |
| number     |            | Theu       |                                            |                                         | Vib (mm/e) |         | Vib (mm/c) |         | Vib (mm/c) |          | Vib (mm/c) |          | Vib (mm/c)           |          | Vib (mm/s |           | Vib (mm/s) |                   | Direction | m/s |          |
| 2013-48    | 8/07/2013  | 12:35      | S16 12-18 Blacksoom                        | OB                                      | <0.25      | <100.8  | 0.03       | 121.0   | 0.45       | 110.0    | 0.07       | 111.6    | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.3              | 167       | 1 1 | 1        |
| 2013-40    | 17/07/2013 | 15:32      | \$13, 18-23, 350 T\$R35                    | TSB                                     | <0.25      | <100.0  | 1.25       | 102.6   | 0.45       | 99.1     | <0.07      | <100.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.3              | 258       | 1.1 | 1        |
| 2013-50    | 26/07/2013 | 13:26      | S13, 22-23, 350 TSB                        | TSB                                     | 0.53       | 88.8    | 0.28       | 88.9    | <0.25      | <109.8   | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.8              | 276       | 1.0 | 0        |
| 2013-51    | 30/07/2013 | 12.12      | S13 10-13 330                              | OB                                      | <0.25      | <109.8  | 1.38       | 99.8    | 0.65       | 98.0     | <0.25      | <109.8   | 10.00                | 120.0    | Not M     | onitored  | 50.00      | -2.3              | 168       | 1.8 | 1        |
| TOTALS     | JULY 2013  | # BLAST    | 27                                         | AVERAGE                                 | 0.53       | 88.8    | 0.96       | 103.1   | 0.57       | 101.7    | 0.07       | 111.6    | 5.00                 | 115.0    |           | 0         | 00.00      | 2.0               | .50       |     | <u> </u> |
| TOTALS     | JULY 2013  | # BLAST    | 27                                         | HIGHEST                                 | 0.53       | 88.8    | 1.38       | 121.0   | 0.65       | 119.0    | 0.07       | 111.6    | 10.00                | 120.0    |           |           |            |                   |           |     |          |
| TOTALS     | ANNUAL     | # BLAST    | 27                                         | AVERAGE                                 | 0.25       | 100.5   | 0.82       | 101.8   | 0.42       | 102.8    | 0.18       | 104.8    | 5.00                 | 115.0    |           |           |            |                   |           |     |          |
| TOTALS     | ANNUAL     | %          | >115dB(L) or 5mm/s                         | 27                                      | 0%         | 0%      | 0%         | 3.7%    | 0%         | 3.7%     | 0%         | 3.7%     | 5%                   | 5%       |           |           |            |                   |           |     |          |

# Appendix 6 – Groundwater Monitoring Results

|               |                        |                            |                |                                                                                             |            |          |                                                                                                  |                      |                       |                         |                  | COOLD INCOME.    |                 |
|---------------|------------------------|----------------------------|----------------|---------------------------------------------------------------------------------------------|------------|----------|--------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------|------------------|------------------|-----------------|
| ADDRES        | SS/OFFICE:             | ×                          |                |                                                                                             |            |          |                                                                                                  |                      | Υ - Λ/                | AND THE AND THE REAL OF |                  | ACIRL LABORAT    | IORY:           |
| PROJEC        | CT ID: WERRIS C        | REEK COAL QUA              | ARTERLY GROUND | WATERS                                                                                      |            |          |                                                                                                  |                      | - Andrew - A Housever |                         |                  | Bi-Monthly Groun | nd Waters - SWL |
| SAMPLE        | ER NAME:               | B Pull                     | 2<br>8<br>0    | KI beu                                                                                      | હે         |          |                                                                                                  |                      | ۶                     |                         |                  | Annual -         | l I A JAF A AN  |
| SITE W        | ERRIS CREEK M          | INE AND SURRO              |                |                                                                                             |            |          |                                                                                                  |                      |                       |                         |                  |                  | - 1-20          |
| es / Analytes | Sample ID / Bore<br>(D | Sample ID Informat<br>Date | Time .         | Standing<br>Water<br>Level                                                                  | Bore depth | Stick up | urge Type                                                                                        | Purge Purge Contract | Pump Set.<br>Depth    | EC - field              | oH - field Tosts | emp - field      | ppearanc<br>e   |
| Reportab      |                        |                            | (24hr)         | mbtoc                                                                                       | mbgl       | э        | Pump /<br>Bailer                                                                                 | -                    | mbloc                 | uSían                   | pH units         | đT               | A               |
|               | MW1                    | 51/3L                      | 11:30          | 572                                                                                         |            |          | Ber                                                                                              |                      |                       | 1194                    | 18:0)            | 1.10             | (La.            |
|               | MW2                    | 21212                      | 12:00          | <u>τ</u> άμ-ΣC                                                                              |            |          | <u>م</u> /                                                                                       |                      |                       | 1961                    | 7.90             | 30 6             |                 |
| *             | MW3                    | 9/5/3                      | 11:30          | 15-01                                                                                       |            |          | the i                                                                                            | 12.0L                | 1                     | 04/2                    | 21.2             | 22/              | Clear           |
|               | MW4                    | 21213                      |                |                                                                                             |            |          | A.                                                                                               | stick                | ς<br>Ι                | unah                    | 5                | book             | 10<br>          |
|               | MW4B                   | 41513                      | 05:21          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |            |          | Ball                                                                                             |                      | -                     | 974                     | 91.1             | R.S              | Clear           |
|               | MW5B                   | 9/5/12                     | 11:50          | 7.5                                                                                         |            |          | 2001                                                                                             |                      |                       | いたら                     | 」<br>イ<br>イ<br>イ | 20,2             | (lear           |
| Q.2           | MW6                    | 7513                       | 12,30          | ごす                                                                                          |            |          |                                                                                                  |                      |                       | 4 211                   | 720              | 4<br>4<br>4      | 121-2-2-2       |
|               | 6MW                    | 21 S 10                    | 040            | 1557                                                                                        |            |          | 8                                                                                                |                      |                       | 763                     | 57.1             | 2<br>7           | Claro           |
|               | • MW10                 | 1513                       | Oris<br>O      | 01-11                                                                                       | s<br>      | -        | 6                                                                                                |                      |                       | 5611                    | 7,87             | 18.7             | Chaur           |
|               | MW14                   |                            | うた             | ñ I<br>Q                                                                                    | 1 400      | 2        | 2.0                                                                                              |                      |                       | 3                       |                  | a punp           | t t             |
|               | MW14B                  | 9<br>17<br>13              | 07:40          |                                                                                             |            | <u>,</u> | R<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |                      |                       | , 92<br>1               | ן<br>ג'י<br>ג'י  | 20.0             | Sin Sin Sin     |
| *             | MW17B                  | 5 2 3                      | N2:SO          | 4.53                                                                                        |            | 4        | ES F                                                                                             | B                    | Č<br>A                | 1917                    | psig             | 17.5             | (Lear           |
|               | MW20                   | 1513                       | 9:00           | 24.51                                                                                       |            |          | lap                                                                                              |                      |                       | No pire                 | sue at           | and t            |                 |
|               | MW24A                  | <u> </u>                   | 13:45          | 13:24                                                                                       | <u>}</u>   |          | 40-                                                                                              |                      | -                     | 052                     | 7:03             | 20.13            | Class           |
|               |                        | 21121                      | N 19           | 1                                                                                           |            |          | -                                                                                                |                      |                       | 28<br>No                | - aprel -        | 70 %             | o on bar        |
|               | P1                     | 1012                       | 10:42          | 1 -                                                                                         |            | ž        | -6                                                                                               | lan                  | $\sum_{r}$            | 470                     | 54.8             | 16.1             | -روحيا)         |
|               | P2                     |                            |                |                                                                                             |            |          | ?                                                                                                |                      |                       |                         |                  |                  |                 |
|               | PUG                    |                            | Andre          | Ĵ                                                                                           | <u> </u>   |          | 5                                                                                                |                      |                       |                         |                  |                  |                 |
|               | MW27                   | 21/5/2                     | 1011           | F<br>P<br>P                                                                                 |            |          | Sei!                                                                                             |                      |                       | モリ                      | 7.45             | 2.5              | Charlin         |
| <u> </u>      | MW29                   | स डि                       | MU15,          | S.IT                                                                                        |            |          | 57                                                                                               | \$<br>\$             | and. X                | 10599                   |                  | 19,5             | (1ax)           |
| PECIAL C      | MW31                   |                            | 13, 1S         | Oni                                                                                         |            |          |                                                                                                  |                      |                       | (Alacil                 | MS.8             | Down             |                 |

.

1.1.1

ୁ ଅନ୍ଦୁ

A.

|             | 4           |            |         |        |                         |            |        |                            |         |                           |              |                 | ž.,      |          |                     |          |         |               |                             | •               |                   | •                |              |              |                |
|-------------|-------------|------------|---------|--------|-------------------------|------------|--------|----------------------------|---------|---------------------------|--------------|-----------------|----------|----------|---------------------|----------|---------|---------------|-----------------------------|-----------------|-------------------|------------------|--------------|--------------|----------------|
| *           | SPECIAL C   | 4          |         |        |                         |            |        |                            |         |                           |              |                 |          |          |                     |          |         | Reporta       | bles / Analytes             | SITE: W         | SAMPLE            | PROJEC           | ADDRES       | CLIENT       | FELDS          |
| NARA        | MW28B       | MW28A      | MW23B   | MW23A  | MW22B                   | MW22A      | MW21A  | MW19A                      | MW18A   | MW17A                     | MW16         | MW15            | MW13D    | MW13B    | MW13                | MW12     | MW8     |               | Sample ID / Bore<br>ID      | ERRIS CREEK M   | ER NAME:          | OT ID: WERRIS CH | SS/OFFICE:   | WERRIS CREEK | AMPLING SHEET  |
| 5/5/13      | 41/2/       | 71513      | 9/5/13  | 9/5/2  | 5/5/13                  | 3/5/13     | 2/5/13 | 8/5/13                     | 41-5 S  | 2158                      | 513          | 5 5 5           | 8/5/13   | 3/5/13   | \$ 5 12             | 9/5/13   | \$ 5 13 | •             | Date                        | NE AND SURRO    |                   | REEK COAL QUA    |              | COAL PTY LTD | - SURFACE & C  |
| 11:10       | 12:00       | 12:45      | 13:30   | 13:-00 | 13:40                   | 14:8       | 14:20  | 9:30                       | 08:21   | 17:00                     | 13:20.       | 081             | 5+ 201   | 10:15    | 00 ( <sup>(</sup> ) | 14.00    | 9:05    | (24hr)        | Time                        | SUNDS           |                   | RTERLY GROUN     |              |              | ROUND WATER    |
| 4.62        | 1           | 6,97       | 4.19    | 3,96   | 23年                     | -cj.+      | 45.9   | 6.03                       | ۍ<br>بې | 364                       | <u>4</u> :22 | <u>م</u> ز<br>ب | 45S8     | 61.2     | 4.57                | 9.10     | C+ +1   | mbgl<br>m     | Standing<br>Water Level     | _               |                   | IDWATERS         |              |              | ŝ              |
| ,           | Part on     | 5          |         |        |                         |            |        |                            |         |                           |              |                 |          |          |                     |          | •       | mbgl<br>mbtoc | Bore depth                  | Bore Data       |                   |                  |              |              |                |
| T           | 4<br>       |            | 54      | A      | ည်                      | á          | 2      | 5                          | 5-1     | 51                        | -1           | 8               | 33       | ÿ        | Ba                  | 5        | 5       | 3<br>82       | Stick up                    |                 |                   |                  |              |              | tit ta ta data |
| 0           |             |            |         |        | ذ آ                     |            | - 0    |                            | Ŕ.      | <del>-</del> <del>0</del> | CHO_         | a               | <u>.</u> | Nos      |                     | 5 -      | Ŕ       | 6,0           | Purge Type<br>Purge         | Samplin         |                   |                  |              |              |                |
|             |             |            |         |        |                         |            |        |                            |         |                           | <u> </u>     |                 |          | myke.    |                     |          |         | a ma          | Volume<br>Pump Set          | 6 Data          | r<br>S            |                  |              |              | a sa ta sa ta  |
| 172         |             | 6          | 6-      | 461    | F                       | S'y        | 1-     | £72                        | R       | 92                        | 6            | 101             | Ā        | No       | 66                  | 7        | 96      | n toc<br>uS   |                             |                 |                   |                  |              |              |                |
| 6           | No ha       | Vo som     | 5<br>1  | 0      | $\frac{\Sigma}{\gamma}$ | 1          | у<br>_ | 8                          | -       | õ                         | 30           |                 | 26       | a (10)   | 2                   | ぞ<br>    | -F      | Cm            | EC - field                  | •               |                   |                  |              |              |                |
| גרן<br>גריך | 1           | ofer       | وكر     | 9/1    | 541                     | 1.10       | ,74    | らん                         | 814     | 21.7                      |              | 7.10            | 1.26     | the      | 1.04                | 7.10     | 95.1    | pH units      | pH - field                  | Field Tasts     |                   |                  |              |              |                |
| 8-16        | No pro      | Broken     | 20.2    | 5.1.2  | 0,91                    | 20,3       | 2,23   | 21.19                      | 20.4    | 21-1                      | 19<br>2      | 20.4            | 2013     | מכן אשים | 19,4                | 19.5     | 19-7    | ĉ             | Temp - field                |                 | Annual -          | Bi-Monthly Grou  | ACIRL LABORA | QUOTATION N  | NO             |
| Clear       | issues a    | wide       | Cheer   | Clear  | Gew                     | Cleer      | Clear  | (lecur                     | Cheer   | alew-                     | Chew         | Clear           | hear     | ter u    | aler                | (law     | aear    |               | Appearance                  |                 | 1LNat.            | nd Waters - SWL  | TORY:        | ŭ            | #              |
| Nil         | T tap c     | - II o ver | N.      | N<br>N | N.                      | 1:1        | NiN    | 2                          | T<br>Z  | NI                        | 2:1          | Ni              | N"1      | " Ilmon  | 1                   | -<br>Ni) | NI      |               | Odor                        | Field Observati | Nutries           | . (Standing Wate |              |              | 592            |
| Gen         | n purp.     | Pare       | Cheer   | Geer   | Cleen                   | Crea       | Clea   | 1 (lei                     | 1 (ha   | Chew                      | (her         | (lee            | Cler     |          | a                   | Clarv    | Clac    |               | Colour                      |                 | k, Meta           | · Level Only)    |              |              | 0              |
|             | 14 ×        | 28         | 1. Pego | - P 50 | s<br>So                 | یم ک<br>مک |        | $\frac{s}{\sum_{i=1}^{n}}$ | 5       | 4<br>2<br>2               | ۲<br>۴<br>ج  | 7               | 14       | 2        | k<br>X<br>S         |          | e Kesa  |               |                             | _               | <sup>γ</sup><br>γ |                  |              |              |                |
| heet in     | -<br>maller | 1- Nm R    | 15-     | ¥<br>1 | 8 Con                   | 3 Pary     | lenar  | long,                      | 5       | S L                       | 1 interior   | ynes In         | tes .    | lars la  | and a               | zelder   | neth    |               |                             |                 | С<br>Ч            |                  |              |              |                |
| or shed.    | , KHS       |            | Imas    | Horas  | mes In                  | es h.      |        | - They                     | -lah    | t Nebr                    | vlew.        |                 | and -    | NR, -00  | 2                   | 2        |         |               |                             |                 |                   | 2                |              |              |                |
| 100         | Red         |            | had     | 602    | Ima                     | - Haus     |        | s condo                    | 1       | 2<br>                     | (1. Aller    | 11 Pmg          | J-law    | PH a     |                     |          |         |               |                             |                 | J                 | Ś                |              | <i>w</i>     |                |
| ļ.          |             | <u></u>    |         | ভ      | i.                      | 10         |        | نسمي                       |         |                           | Jul J        | •               | T        | sheet    | د                   |          | L 1     |               | . <u></u> <u></u> <u></u> . | l <u></u>       |                   |                  |              |              |                |

|                                  |                                 | From                                 | 6429 08                              | 4591.          |                              |                              |           |                 |         |
|----------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------|------------------------------|------------------------------|-----------|-----------------|---------|
| CLIENT: WERRIS CREEK COAL PTY LT | 0                               |                                      |                                      |                | QUOTATION No:                |                              |           |                 |         |
| ADDRESS/OFFICE:                  |                                 |                                      |                                      |                | ACIRL LABORATORY:            |                              |           |                 |         |
| PROJECT ID: WERRIS CREEK COAL Q  | UARTERLY GROUNDWATERS           |                                      |                                      |                | Bi-Monthly Ground Waters - S | SWL (Standing Water Level On | N)        | ALS             |         |
| SAMPLER NAME:                    |                                 | Å                                    | -                                    |                |                              |                              |           |                 |         |
| SITE: WERRIS CREEK MINE AND SUR  | ROUNDS                          |                                      |                                      |                |                              |                              |           | ACIM            |         |
| sample ID / Sample ID / Date     | Time<br>Standing<br>Water Level | Bore depth<br>Stick up<br>Purge Type | Purge<br>Volume<br>Pump Set<br>Depth | EC - field     | Femp - field                 | Odor Odor                    | Colour    | Commerts        |         |
| Reportab                         | (24hr) Imbgl                    | embgl<br>mbtoc<br>m<br>Bailer        | / L ambgl<br>ambtoc                  | uS/cm pH units | റ്                           |                              |           |                 | 1       |
| MW8 25/1/13                      | 11:00 15-39                     | ۲.Q                                  |                                      | -              |                              |                              | Rosen     | eath.           |         |
| * MW12 26 7/13                   | , 12:25 -                       | 0,5                                  | " Blockage                           | or purp @ ap   | 3.50 m                       | 50 > 850.                    | m Hazel   | dene.           | e       |
| MW13 35 7 3                      | Dr.4 04-11                      | 04                                   | C                                    | -              |                              |                              | Wedell    | lone. (well)    |         |
| MW13B 25/1/13                    | 13-60 3-191                     | C,O                                  |                                      |                |                              |                              | Taylors   | Jave-Ope Hays   | ed.     |
| MW13D 25 7 3                     | 19.20 4.61                      | 6.0                                  |                                      | 5              |                              |                              | Taylors   | lane - Windy    | 11      |
| MW15 25/7/13                     | 11-7 OC:561                     | Ģ.<br>Y                              |                                      |                | 5                            |                              | laynes    | · lane - Window | III     |
| · MW16 26 7 3                    | 11:40 4-68                      | م<br>بن<br>م                         |                                      | . ~            |                              |                              | * Mosta   | in View - Red   | the.    |
| - MW17A 26 7 13                  | , 11-10 3-79                    | 5.0                                  |                                      |                |                              |                              | W CB      | dell m. shed    |         |
| × MW18A 26 7 13                  | - 11: JO 3.57                   | 1                                    |                                      |                |                              |                              | Ŷ         | r r-sidea       | f have  |
| MW19A 15/7 12                    | N: 20 5-73                      | 015                                  |                                      |                | 3                            |                              | Linba     | · - pump.       |         |
| MW21A 25 7 12                    | 13,45 6.56                      | 0.36                                 |                                      | 1. Mark        |                              |                              | GLENA     | RA.             | 0       |
| - MW22A 26 7 12                  | 2 12:00 4.71                    | 0.55                                 |                                      |                |                              |                              | 305 %     | thes In Hous    | 0       |
| - MW22B 26 7 3                   | 5 H 21:45 4A3                   | Sh O                                 |                                      |                |                              |                              | >         | · Inga          | 3       |
| MW23A 257 15                     | 13:00 3.64                      | t oj                                 |                                      |                |                              |                              | Prog E    | Ky - Hose Va    | 6       |
| MW23B JS/T/13                    | 13.15 4.23                      | 0.(                                  |                                      |                |                              |                              | 500       | - Trigella      | Pullade |
| MW28A 15 7                       | 14:10 10:9                      | 21,0                                 |                                      |                |                              |                              | "Waad     | lown-HS W       | The     |
| 60 MW288 X 1, 12                 | 14:00                           | 8-0                                  |                                      | Imp over ba    | 2 20 50                      |                              | 1 pages 1 | an TRUS         |         |
| - NARANJI 25                     | 1-115 02:40 3.97                |                                      |                                      |                |                              |                              | #310      | he Ln, (Pupto   | Ľ       |
|                                  | -                               |                                      |                                      | ,              | к<br>2                       | л<br>2                       | Sheet:    | q               |         |

| DRESS/OFFICE:                                |                                      |              |             |                  |           |                 | ACIRL LABORA    | TORY:             |                    |           |           |
|----------------------------------------------|--------------------------------------|--------------|-------------|------------------|-----------|-----------------|-----------------|-------------------|--------------------|-----------|-----------|
| OJECT ID: WERRIS CREEK COAL QUARTERLY GROUND | WATERS                               |              |             |                  |           |                 | Bi-Monthly Grou | nd Waters - SWL ( | Standing Water Lev | rel Only) |           |
| MPLER NAME B AWWYS / C Ell                   | source                               | æ            |             |                  |           |                 |                 |                   |                    |           |           |
| TE: WERRIS CREEK MINE AND SURROUNDS          |                                      |              |             |                  |           |                 |                 | 2                 |                    |           |           |
| Analytes Sample ID / Bore Date Time          | anding<br>ter Level<br>re depth Data | tick up      | Purge olume | Imp Set<br>Depth | C - field | 1 - field Tests | np - field      | earance           | Odor Odor          | Colour    |           |
| (244)                                        | ambgl ambgl<br>ambtoc ambtoc         | m Pun<br>Bai | np/         | ambg/            | uS/cm     | pH units        | ്               | 4                 |                    |           |           |
| 00:01 21/c/22 1MM                            | SHOL                                 |              |             |                  |           |                 |                 |                   |                    |           | 6 Monthly |
| MW2 25 7 13 16.20                            | JS-41                                | 0.15         |             |                  |           |                 |                 |                   |                    |           | 6 Monthly |
| MW3 36 1/13 10 115                           | ていたい                                 | 0.98         |             |                  |           |                 |                 |                   |                    |           | 6 Monthly |
| MW4                                          | •                                    |              |             |                  | M Brok    | ion shi         | deup -          | undole            | 40 bc              | ete       |           |
| MW4B 26 7 13 11.00                           | 10.01                                | 0.,0         |             |                  |           |                 | -               |                   |                    |           | 6 Monthly |
| MW5 26/7413 10:50                            | 1.91                                 | 1.15         |             |                  |           |                 |                 |                   |                    |           | 6 Monthly |
| MW5B 26/7/13 10:40                           | 7,48                                 | 070          |             |                  |           |                 |                 |                   |                    |           |           |
| MW6 25/7/13 10:40                            | 12.49                                |              | 2           |                  |           |                 |                 |                   |                    |           | 6 Monthly |
| USita filling GMW                            | 5-74                                 |              |             |                  |           |                 |                 |                   |                    |           | Mine -    |
| MW10 15 113 9:20                             | 17.01                                | S<br>S       | 24          |                  |           |                 |                 | 1                 |                    |           | Escell    |
| MW11                                         | ×                                    |              | r<br>Z      | peint            | to die    | - Pump          | aver be         | 5                 |                    |           | Escolt 1  |
| MW14 26 7 13 9:35                            | えり                                   | C P O        |             | -                |           | -               |                 |                   |                    |           | Mire -    |
| MW148 26 7 13 9315                           | 17.15                                | 27.0         |             |                  |           |                 |                 |                   |                    |           | Mine -    |
| MW17B 26 7 13 11:20                          | G . B3                               | 0.65         |             |                  |           | je s            |                 |                   |                    |           | * Ww      |
| MW20 25713 8:50                              | 19.57                                | 0:35         |             |                  |           |                 |                 |                   |                    |           | Tonsle    |
| MW24A 25 7 13 14:50                          | 13-01                                | Sie          |             |                  |           |                 |                 |                   |                    |           | May       |
| MW25A 35 7 35                                |                                      |              | 2           | e acce           | and go    | aut             | ber             |                   |                    |           | Bronza    |
| MW25B                                        |                                      |              | 5           | r<br>T           | 2-        | ł               | 7               |                   |                    |           | Brand     |
| P.                                           | đ                                    | J            | UN We       | 202              | duction   | aven.           |                 |                   |                    |           | 0         |
| P2                                           |                                      | +            | Under-      | 040-             | tiend en. | e               |                 |                   |                    |           |           |
| PUG                                          |                                      |              | Andrews     | ٤                | t to      | mant            |                 |                   |                    |           |           |
| MW27 25/7/13 9:40                            | 43.03                                | 540          |             |                  | L         |                 |                 |                   |                    |           | Contra    |
| MW29 25/7,13 14:45                           | 11-74                                | Se o         |             |                  |           |                 |                 |                   | 5 · · · ·          | ×.,       | Spoint    |
|                                              | 2011                                 | _            | а<br>ж      |                  |           |                 |                 |                   |                    |           | The Anton |

(

Sheet:

A. Car

of

# Appendix 7 – Surface Water Monitoring Results





**Environmental Division** 

|              |                                 | <b>CERTIFICATE OF ANALYSIS</b> |                                                       |
|--------------|---------------------------------|--------------------------------|-------------------------------------------------------|
| Work Order   | ES1314418                       | Page                           | : 1 of 6                                              |
| Amendment    | : 1                             |                                |                                                       |
| Client       |                                 | Laboratory                     | : Environmental Division Sydney                       |
| Contact      | : A WRIGHT                      | Contact                        | : Client Services                                     |
| Address      | : 5-7                           | Address                        | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                       |                                |                                                       |
|              | GUNNEDAH NSW 2380               |                                |                                                       |
| E-mail       | : awright@whitehavencoal.com.au | E-mail                         | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                  | Telephone                      | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                  | Facsimile                      | : +61-2-8784 8500                                     |
| Project      | : WERRIS CREEK SURFACE-WATER    | QC Level                       | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 6165                          |                                |                                                       |
| C-O-C number | :                               | Date Samples Received          | : 28-JUN-2013                                         |
| Sampler      | : C.ELLBOURN                    | Issue Date                     | : 12-JUL-2013                                         |
| Site         | :                               |                                |                                                       |
|              |                                 | No. of samples received        | : 11                                                  |
| Quote number | : SY/417/13                     | No. of samples analysed        | : 11                                                  |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results



Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC04: Field observations supplied by ALS ACIRL.
- This report has been amended following changes to the analytical data reported. The quality system is being utilised to resolve this issue. The specific data affected includes Conductivity results for sample 1 & 2



| Sub-Matrix: WATER (Matrix: WATER)            |                   | Cli         | ent sample ID   | SB2               | SB9               | SD4               | SD5               | VWD2              |
|----------------------------------------------|-------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl                | ient sampli | ing date / time | 25-JUN-2013 12:00 | 25-JUN-2013 11:30 | 25-JUN-2013 13:30 | 25-JUN-2013 13:15 | 25-JUN-2013 11:00 |
| Compound                                     | CAS Number        | LOR         | Unit            | ES1314418-001     | ES1314418-002     | ES1314418-003     | ES1314418-004     | ES1314418-006     |
| AC03: Field Tests                            |                   |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated) |                   | 1           | µS/cm           | 897               | 203               | 238               | 234               | 831               |
| pH                                           |                   | 0.01        | pH Unit         | 9.27              | 8.23              | 8.51              | 8.25              | 8.29              |
| Temperature                                  |                   | 0.1         | °C              | 11.7              | 11.6              | 11.1              | 11.4              | 13.6              |
| EA005P: pH by PC Titrator                    |                   |             |                 |                   |                   |                   |                   |                   |
| pH Value                                     |                   | 0.01        | pH Unit         | 8.66              | 7.95              | 7.61              | 7.94              | 8.05              |
| EA010P: Conductivity by PC Titrator          |                   |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C               |                   | 1           | µS/cm           | 924               | 203               | 175               | 237               | 880               |
| EA025: Suspended Solids                      |                   |             |                 |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                        |                   | 5           | mg/L            | 8                 | 48                | 25                | 28                | <5                |
| EK057G: Nitrite as N by Discrete Analys      | ser               |             |                 |                   |                   |                   |                   |                   |
| Nitrite as N                                 |                   | 0.01        | mg/L            | 0.03              | 0.03              | 0.01              | <0.01             | 0.05              |
| EK058G: Nitrate as N by Discrete Analy       | ser               |             |                 |                   |                   |                   |                   |                   |
| Nitrate as N                                 | 14797-55-8        | 0.01        | mg/L            | 0.63              | 0.87              | 0.47              | 0.10              | 0.86              |
| EK059G: Nitrite plus Nitrate as N (NOx)      | by Discrete Ana   | lyser       |                 |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                       |                   | 0.01        | mg/L            | 0.66              | 0.90              | 0.48              | 0.10              | 0.91              |
| EK061G: Total Kjeldahl Nitrogen By Dise      | crete Analyser    |             |                 |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                 |                   | 0.1         | mg/L            | 0.7               | 0.6               | 1.0               | 1.3               | 0.7               |
| EK062G: Total Nitrogen as N (TKN + NO        | x) by Discrete Ar | nalyser     |                 |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N             |                   | 0.1         | mg/L            | 1.4               | 1.5               | 1.5               | 1.4               | 1.6               |
| EK067G: Total Phosphorus as P by Disc        | crete Analyser    |             |                 |                   |                   |                   |                   |                   |
| Total Phosphorus as P                        |                   | 0.01        | mg/L            | <0.01             | 0.01              | 0.37              | 0.73              | <0.01             |
| EK071G: Reactive Phosphorus as P by o        | discrete analyser |             |                 |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                     | 14265-44-2        | 0.01        | mg/L            | <0.01             | <0.01             | 0.34              | 0.67              | <0.01             |
| EP020: Oil and Grease (O&G)                  |                   |             |                 |                   |                   |                   |                   |                   |
| Oil & Grease                                 |                   | 5           | mg/L            | <5                | <5                | <5                |                   |                   |
| Oil & Grease                                 |                   | 5           | mg/L            |                   |                   |                   | <5                | <5                |



| Sub-Matrix: WATER (Matrix: WATER)            |                    | Cli        | ent sample ID   | BGD               | QCU               | QCD               | WCD               | VWD3              |
|----------------------------------------------|--------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl                 | ient sampl | ing date / time | 25-JUN-2013 09:30 | 25-JUN-2013 10:00 | 25-JUN-2013 10:30 | 25-JUN-2013 08:50 | 25-JUN-2013 15:00 |
| Compound                                     | CAS Number         | LOR        | Unit            | ES1314418-007     | ES1314418-008     | ES1314418-009     | ES1314418-010     | ES1314418-011     |
| AC03: Field Tests                            |                    |            |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated) |                    | 1          | µS/cm           | 310               | 455               | 807               | 1280              | 1040              |
| рН                                           |                    | 0.01       | pH Unit         | 8.61              | 7.51              | 8.01              | 8.57              | 8.74              |
| Temperature                                  |                    | 0.1        | °C              | 10.2              | 12.0              | 11.5              | 9.6               | 12.9              |
| EA005P: pH by PC Titrator                    |                    |            |                 |                   |                   |                   |                   |                   |
| pH Value                                     |                    | 0.01       | pH Unit         | 8.01              | 7.74              | 7.95              | 8.26              | 8.41              |
| EA010P: Conductivity by PC Titrator          |                    |            |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C               |                    | 1          | µS/cm           | 322               | 484               | 850               | 1350              | 1100              |
| EA025: Suspended Solids                      |                    |            |                 |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                        |                    | 5          | mg/L            | 116               | 5                 | <5                | 12                | 10                |
| EK057G: Nitrite as N by Discrete Analy       | ser                |            |                 |                   |                   |                   |                   |                   |
| Nitrite as N                                 |                    | 0.01       | mg/L            | <0.01             | <0.01             | <0.01             | 0.01              | 0.07              |
| EK058G: Nitrate as N by Discrete Analy       | yser               |            |                 |                   |                   |                   |                   |                   |
| Nitrate as N                                 | 14797-55-8         | 0.01       | mg/L            | 0.03              | 0.32              | 0.14              | 0.71              | 4.33              |
| EK059G: Nitrite plus Nitrate as N (NOx)      | by Discrete Ana    | lyser      |                 |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                       |                    | 0.01       | mg/L            | 0.03              | 0.32              | 0.14              | 0.72              | 4.40              |
| EK061G: Total Kjeldahl Nitrogen By Dis       | crete Analyser     |            |                 |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                 |                    | 0.1        | mg/L            | 1.2               | <0.1              | 0.2               | 0.3               | 2.0               |
| EK062G: Total Nitrogen as N (TKN + NC        | 0x) by Discrete Ar | nalyser    |                 |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N             |                    | 0.1        | mg/L            | 1.2               | 0.3               | 0.3               | 1.0               | 6.4               |
| EK067G: Total Phosphorus as P by Dis         | crete Analyser     |            |                 |                   |                   |                   |                   |                   |
| Total Phosphorus as P                        |                    | 0.01       | mg/L            | 0.18              | 0.18              | 0.08              | 0.18              | <0.01             |
| EK071G: Reactive Phosphorus as P by          | discrete analyser  |            |                 |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                     | 14265-44-2         | 0.01       | mg/L            | 0.11              | 0.01              | 0.05              | 0.14              | <0.01             |
| EP020: Oil and Grease (O&G)                  |                    |            |                 |                   |                   |                   |                   |                   |
| Oil & Grease                                 |                    | 5          | mg/L            | <5                | <5                | <5                | <5                | <5                |



| Sub-Matrix: WATER (Matrix: WATER)            |                   | Cli         | ent sample ID  | VWD4              | <br> | <br> |
|----------------------------------------------|-------------------|-------------|----------------|-------------------|------|------|
|                                              | Cl                | ient sampli | ng date / time | 25-JUN-2013 15:00 | <br> | <br> |
| Compound                                     | CAS Number        | LOR         | Unit           | ES1314418-012     | <br> | <br> |
| AC03: Field Tests                            |                   |             |                |                   |      |      |
| Electrical Conductivity (Non<br>Compensated) |                   | 1           | µS/cm          | 929               | <br> | <br> |
| pH                                           |                   | 0.01        | pH Unit        | 8.93              | <br> | <br> |
| Temperature                                  |                   | 0.1         | °C             | 12.4              | <br> | <br> |
| EA005P: pH by PC Titrator                    |                   |             |                |                   |      |      |
| pH Value                                     |                   | 0.01        | pH Unit        | 8.58              | <br> | <br> |
| EA010P: Conductivity by PC Titrator          |                   |             |                |                   |      |      |
| Electrical Conductivity @ 25°C               |                   | 1           | μS/cm          | 986               | <br> | <br> |
| EA025: Suspended Solids                      |                   |             |                |                   |      |      |
| Suspended Solids (SS)                        |                   | 5           | mg/L           | 5                 | <br> | <br> |
| EK057G: Nitrite as N by Discrete Analys      | ser               |             |                |                   |      |      |
| Nitrite as N                                 |                   | 0.01        | mg/L           | <0.01             | <br> | <br> |
| EK058G: Nitrate as N by Discrete Analy       | ser               |             |                |                   |      |      |
| Nitrate as N                                 | 14797-55-8        | 0.01        | mg/L           | 0.10              | <br> | <br> |
| EK059G: Nitrite plus Nitrate as N (NOx)      | by Discrete Ana   | lyser       |                |                   |      |      |
| Nitrite + Nitrate as N                       |                   | 0.01        | mg/L           | 0.10              | <br> | <br> |
| EK061G: Total Kjeldahl Nitrogen By Dise      | crete Analyser    |             |                |                   |      |      |
| Total Kjeldahl Nitrogen as N                 |                   | 0.1         | mg/L           | 2.7               | <br> | <br> |
| EK062G: Total Nitrogen as N (TKN + NO        | x) by Discrete Ar | nalyser     |                |                   |      |      |
| <sup>^</sup> Total Nitrogen as N             |                   | 0.1         | mg/L           | 2.8               | <br> | <br> |
| EK067G: Total Phosphorus as P by Disc        | rete Analyser     |             |                |                   |      |      |
| Total Phosphorus as P                        |                   | 0.01        | mg/L           | <0.01             | <br> | <br> |
| EK071G: Reactive Phosphorus as P by o        | discrete analyser |             |                |                   |      |      |
| Reactive Phosphorus as P                     | 14265-44-2        | 0.01        | mg/L           | <0.01             | <br> | <br> |
| EP020: Oil and Grease (O&G)                  |                   |             |                |                   |      |      |
| Oil & Grease                                 |                   | 5           | mg/L           | <5                | <br> | <br> |



### **Descriptive Results**

#### Sub-Matrix: WATER

| Method: Compound         | Client sample ID - Client sampling date / time | Analytical Results  |
|--------------------------|------------------------------------------------|---------------------|
| AC04: Field Observations |                                                |                     |
| AC04: Appearance         | SB2 - 25-JUN-2013 12:00                        | CLEAR               |
| AC04: Appearance         | SB9 - 25-JUN-2013 11:30                        | SLIGHTY BROWN       |
| AC04: Appearance         | SD4 - 25-JUN-2013 13:30                        | SLIGHT BROWN        |
| AC04: Appearance         | SD5 - 25-JUN-2013 13:15                        | SLIGHT BROWN YELLOW |
| AC04: Appearance         | VWD2 - 25-JUN-2013 11:00                       | CLEAR               |
| AC04: Appearance         | BGD - 25-JUN-2013 09:30                        | SLIGHTY TURBID      |
| AC04: Appearance         | QCU - 25-JUN-2013 10:00                        | CLEAR               |
| AC04: Appearance         | QCD - 25-JUN-2013 10:30                        | CLEAR               |
| AC04: Appearance         | WCD - 25-JUN-2013 08:50                        | CLEAR               |
| AC04: Appearance         | VWD3 - 25-JUN-2013 15:00                       | CLEAR               |
| AC04: Appearance         | VWD4 - 25-JUN-2013 15:00                       | CLEAR               |
| AC04: Odour              | SB2 - 25-JUN-2013 12:00                        | NIL                 |
| AC04: Odour              | SB9 - 25-JUN-2013 11:30                        | NIL                 |
| AC04: Odour              | SD4 - 25-JUN-2013 13:30                        | NIL                 |
| AC04: Odour              | SD5 - 25-JUN-2013 13:15                        | NIL                 |
| AC04: Odour              | VWD2 - 25-JUN-2013 11:00                       | NIL                 |
| AC04: Odour              | BGD - 25-JUN-2013 09:30                        | NIL                 |
| AC04: Odour              | QCU - 25-JUN-2013 10:00                        | NIL                 |
| AC04: Odour              | QCD - 25-JUN-2013 10:30                        | NIL                 |
| AC04: Odour              | WCD - 25-JUN-2013 08:50                        | NIL                 |
| AC04: Odour              | VWD3 - 25-JUN-2013 15:00                       | NIL                 |
| AC04: Odour              | VWD4 - 25-JUN-2013 15:00                       | NIL                 |
| AC04: Colour             | SB2 - 25-JUN-2013 12:00                        | CLEAR               |
| AC04: Colour             | SB9 - 25-JUN-2013 11:30                        | CLEAR               |
| AC04: Colour             | SD4 - 25-JUN-2013 13:30                        | CLEAR               |
| AC04: Colour             | SD5 - 25-JUN-2013 13:15                        | CLEAR               |
| AC04: Colour             | VWD2 - 25-JUN-2013 11:00                       | CLEAR               |
| AC04: Colour             | BGD - 25-JUN-2013 09:30                        | SLIGHTLY TURBID     |
| AC04: Colour             | QCU - 25-JUN-2013 10:00                        | CLEAR               |
| AC04: Colour             | QCD - 25-JUN-2013 10:30                        | CLEAR               |
| AC04: Colour             | WCD - 25-JUN-2013 08:50                        | CLEAR               |
| AC04: Colour             | VWD3 - 25-JUN-2013 15:00                       | CLEAR               |
| AC04: Colour             | VWD4 - 25-JUN-2013 15:00                       | CLEAR               |

# Appendix 8 – Discharge Monitoring Results





**Environmental Division** 

|              |                                 | <b>CERTIFICATE OF ANALYSIS</b> |                                                       |
|--------------|---------------------------------|--------------------------------|-------------------------------------------------------|
| Work Order   | ES1314418                       | Page                           | : 1 of 6                                              |
| Amendment    | : 1                             |                                |                                                       |
| Client       |                                 | Laboratory                     | : Environmental Division Sydney                       |
| Contact      | : A WRIGHT                      | Contact                        | : Client Services                                     |
| Address      | : 5-7                           | Address                        | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                       |                                |                                                       |
|              | GUNNEDAH NSW 2380               |                                |                                                       |
| E-mail       | : awright@whitehavencoal.com.au | E-mail                         | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                  | Telephone                      | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                  | Facsimile                      | : +61-2-8784 8500                                     |
| Project      | : WERRIS CREEK SURFACE-WATER    | QC Level                       | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 6165                          |                                |                                                       |
| C-O-C number | :                               | Date Samples Received          | : 28-JUN-2013                                         |
| Sampler      | : C.ELLBOURN                    | Issue Date                     | : 12-JUL-2013                                         |
| Site         | :                               |                                |                                                       |
|              |                                 | No. of samples received        | : 11                                                  |
| Quote number | : SY/417/13                     | No. of samples analysed        | : 11                                                  |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results



Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC04: Field observations supplied by ALS ACIRL.
- This report has been amended following changes to the analytical data reported. The quality system is being utilised to resolve this issue. The specific data affected includes Conductivity results for sample 1 & 2



| Sub-Matrix: WATER (Matrix: WATER)            |                   | Cli         | ent sample ID   | SB2               | SB9               | SD4               | SD5               | VWD2              |
|----------------------------------------------|-------------------|-------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | Cl                | ient sampli | ing date / time | 25-JUN-2013 12:00 | 25-JUN-2013 11:30 | 25-JUN-2013 13:30 | 25-JUN-2013 13:15 | 25-JUN-2013 11:00 |
| Compound                                     | CAS Number        | LOR         | Unit            | ES1314418-001     | ES1314418-002     | ES1314418-003     | ES1314418-004     | ES1314418-006     |
| AC03: Field Tests                            |                   |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non<br>Compensated) |                   | 1           | µS/cm           | 897               | 203               | 238               | 234               | 831               |
| pH                                           |                   | 0.01        | pH Unit         | 9.27              | 8.23              | 8.51              | 8.25              | 8.29              |
| Temperature                                  |                   | 0.1         | °C              | 11.7              | 11.6              | 11.1              | 11.4              | 13.6              |
| EA005P: pH by PC Titrator                    |                   |             |                 |                   |                   |                   |                   |                   |
| pH Value                                     |                   | 0.01        | pH Unit         | 8.66              | 7.95              | 7.61              | 7.94              | 8.05              |
| EA010P: Conductivity by PC Titrator          |                   |             |                 |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C               |                   | 1           | µS/cm           | 924               | 203               | 175               | 237               | 880               |
| EA025: Suspended Solids                      |                   |             |                 |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                        |                   | 5           | mg/L            | 8                 | 48                | 25                | 28                | <5                |
| EK057G: Nitrite as N by Discrete Analys      | ser               |             |                 |                   |                   |                   |                   |                   |
| Nitrite as N                                 |                   | 0.01        | mg/L            | 0.03              | 0.03              | 0.01              | <0.01             | 0.05              |
| EK058G: Nitrate as N by Discrete Analy       | ser               |             |                 |                   |                   |                   |                   |                   |
| Nitrate as N                                 | 14797-55-8        | 0.01        | mg/L            | 0.63              | 0.87              | 0.47              | 0.10              | 0.86              |
| EK059G: Nitrite plus Nitrate as N (NOx)      | by Discrete Ana   | lyser       |                 |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                       |                   | 0.01        | mg/L            | 0.66              | 0.90              | 0.48              | 0.10              | 0.91              |
| EK061G: Total Kjeldahl Nitrogen By Dise      | crete Analyser    |             |                 |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                 |                   | 0.1         | mg/L            | 0.7               | 0.6               | 1.0               | 1.3               | 0.7               |
| EK062G: Total Nitrogen as N (TKN + NO        | x) by Discrete Ar | nalyser     |                 |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N             |                   | 0.1         | mg/L            | 1.4               | 1.5               | 1.5               | 1.4               | 1.6               |
| EK067G: Total Phosphorus as P by Disc        | crete Analyser    |             |                 |                   |                   |                   |                   |                   |
| Total Phosphorus as P                        |                   | 0.01        | mg/L            | <0.01             | 0.01              | 0.37              | 0.73              | <0.01             |
| EK071G: Reactive Phosphorus as P by o        | discrete analyser |             |                 |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                     | 14265-44-2        | 0.01        | mg/L            | <0.01             | <0.01             | 0.34              | 0.67              | <0.01             |
| EP020: Oil and Grease (O&G)                  |                   |             |                 |                   |                   |                   |                   |                   |
| Oil & Grease                                 |                   | 5           | mg/L            | <5                | <5                | <5                |                   |                   |
| Oil & Grease                                 |                   | 5           | mg/L            |                   |                   |                   | <5                | <5                |



| Sub-Matrix: WATER (Matrix: WATER)                            |                    | Cli     | ent sample ID     | BGD               | QCU               | QCD               | WCD               | VWD3          |
|--------------------------------------------------------------|--------------------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------|
| Client sampling date / time                                  |                    |         | 25-JUN-2013 09:30 | 25-JUN-2013 10:00 | 25-JUN-2013 10:30 | 25-JUN-2013 08:50 | 25-JUN-2013 15:00 |               |
| Compound                                                     | CAS Number         | LOR     | Unit              | ES1314418-007     | ES1314418-008     | ES1314418-009     | ES1314418-010     | ES1314418-011 |
| AC03: Field Tests                                            |                    |         |                   |                   |                   |                   |                   |               |
| Electrical Conductivity (Non<br>Compensated)                 |                    | 1       | µS/cm             | 310               | 455               | 807               | 1280              | 1040          |
| рН                                                           |                    | 0.01    | pH Unit           | 8.61              | 7.51              | 8.01              | 8.57              | 8.74          |
| Temperature                                                  |                    | 0.1     | °C                | 10.2              | 12.0              | 11.5              | 9.6               | 12.9          |
| EA005P: pH by PC Titrator                                    |                    |         |                   |                   |                   |                   |                   |               |
| pH Value                                                     |                    | 0.01    | pH Unit           | 8.01              | 7.74              | 7.95              | 8.26              | 8.41          |
| EA010P: Conductivity by PC Titrator                          |                    |         |                   |                   |                   |                   |                   |               |
| Electrical Conductivity @ 25°C                               |                    | 1       | µS/cm             | 322               | 484               | 850               | 1350              | 1100          |
| EA025: Suspended Solids                                      |                    |         |                   |                   |                   |                   |                   |               |
| Suspended Solids (SS)                                        |                    | 5       | mg/L              | 116               | 5                 | <5                | 12                | 10            |
| EK057G: Nitrite as N by Discrete Analy                       | ser                |         |                   |                   |                   |                   |                   |               |
| Nitrite as N                                                 |                    | 0.01    | mg/L              | <0.01             | <0.01             | <0.01             | 0.01              | 0.07          |
| EK058G: Nitrate as N by Discrete Analyser                    |                    |         |                   |                   |                   |                   |                   |               |
| Nitrate as N                                                 | 14797-55-8         | 0.01    | mg/L              | 0.03              | 0.32              | 0.14              | 0.71              | 4.33          |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser |                    |         |                   |                   |                   |                   |                   |               |
| Nitrite + Nitrate as N                                       |                    | 0.01    | mg/L              | 0.03              | 0.32              | 0.14              | 0.72              | 4.40          |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser         |                    |         |                   |                   |                   |                   |                   |               |
| Total Kjeldahl Nitrogen as N                                 |                    | 0.1     | mg/L              | 1.2               | <0.1              | 0.2               | 0.3               | 2.0           |
| EK062G: Total Nitrogen as N (TKN + NC                        | 0x) by Discrete Ar | nalyser |                   |                   |                   |                   |                   |               |
| <sup>^</sup> Total Nitrogen as N                             |                    | 0.1     | mg/L              | 1.2               | 0.3               | 0.3               | 1.0               | 6.4           |
| EK067G: Total Phosphorus as P by Dis                         | crete Analyser     |         |                   |                   |                   |                   |                   |               |
| Total Phosphorus as P                                        |                    | 0.01    | mg/L              | 0.18              | 0.18              | 0.08              | 0.18              | <0.01         |
| EK071G: Reactive Phosphorus as P by discrete analyser        |                    |         |                   |                   |                   |                   |                   |               |
| Reactive Phosphorus as P                                     | 14265-44-2         | 0.01    | mg/L              | 0.11              | 0.01              | 0.05              | 0.14              | <0.01         |
| EP020: Oil and Grease (O&G)                                  |                    |         |                   |                   |                   |                   |                   |               |
| Oil & Grease                                                 |                    | 5       | mg/L              | <5                | <5                | <5                | <5                | <5            |


#### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER) Client sample ID |                   | VWD4        | <br>           | <br>              |      |      |
|----------------------------------------------------|-------------------|-------------|----------------|-------------------|------|------|
|                                                    | Cl                | ient sampli | ng date / time | 25-JUN-2013 15:00 | <br> | <br> |
| Compound                                           | CAS Number        | LOR         | Unit           | ES1314418-012     | <br> | <br> |
| AC03: Field Tests                                  |                   |             |                |                   |      |      |
| Electrical Conductivity (Non<br>Compensated)       |                   | 1           | µS/cm          | 929               | <br> | <br> |
| pH                                                 |                   | 0.01        | pH Unit        | 8.93              | <br> | <br> |
| Temperature                                        |                   | 0.1         | °C             | 12.4              | <br> | <br> |
| EA005P: pH by PC Titrator                          |                   |             |                |                   |      |      |
| pH Value                                           |                   | 0.01        | pH Unit        | 8.58              | <br> | <br> |
| EA010P: Conductivity by PC Titrator                |                   |             |                |                   |      |      |
| Electrical Conductivity @ 25°C                     |                   | 1           | μS/cm          | 986               | <br> | <br> |
| EA025: Suspended Solids                            |                   |             |                |                   |      |      |
| Suspended Solids (SS)                              |                   | 5           | mg/L           | 5                 | <br> | <br> |
| EK057G: Nitrite as N by Discrete Analys            | ser               |             |                |                   |      |      |
| Nitrite as N                                       |                   | 0.01        | mg/L           | <0.01             | <br> | <br> |
| EK058G: Nitrate as N by Discrete Analy             | ser               |             |                |                   |      |      |
| Nitrate as N                                       | 14797-55-8        | 0.01        | mg/L           | 0.10              | <br> | <br> |
| EK059G: Nitrite plus Nitrate as N (NOx)            | by Discrete Ana   | lyser       |                |                   |      |      |
| Nitrite + Nitrate as N                             |                   | 0.01        | mg/L           | 0.10              | <br> | <br> |
| EK061G: Total Kjeldahl Nitrogen By Dise            | crete Analyser    |             |                |                   |      |      |
| Total Kjeldahl Nitrogen as N                       |                   | 0.1         | mg/L           | 2.7               | <br> | <br> |
| EK062G: Total Nitrogen as N (TKN + NO              | x) by Discrete Ar | nalyser     |                |                   |      |      |
| <sup>^</sup> Total Nitrogen as N                   |                   | 0.1         | mg/L           | 2.8               | <br> | <br> |
| EK067G: Total Phosphorus as P by Disc              | rete Analyser     |             |                |                   |      |      |
| Total Phosphorus as P                              |                   | 0.01        | mg/L           | <0.01             | <br> | <br> |
| EK071G: Reactive Phosphorus as P by o              | discrete analyser |             |                |                   |      |      |
| Reactive Phosphorus as P                           | 14265-44-2        | 0.01        | mg/L           | <0.01             | <br> | <br> |
| EP020: Oil and Grease (O&G)                        |                   |             |                |                   |      |      |
| Oil & Grease                                       |                   | 5           | mg/L           | <5                | <br> | <br> |



#### Analytical Results

#### **Descriptive Results**

#### Sub-Matrix: WATER

| Method: Compound         | Client sample ID - Client sampling date / time | Analytical Results  |
|--------------------------|------------------------------------------------|---------------------|
| AC04: Field Observations |                                                |                     |
| AC04: Appearance         | SB2 - 25-JUN-2013 12:00                        | CLEAR               |
| AC04: Appearance         | SB9 - 25-JUN-2013 11:30                        | SLIGHTY BROWN       |
| AC04: Appearance         | SD4 - 25-JUN-2013 13:30                        | SLIGHT BROWN        |
| AC04: Appearance         | SD5 - 25-JUN-2013 13:15                        | SLIGHT BROWN YELLOW |
| AC04: Appearance         | VWD2 - 25-JUN-2013 11:00                       | CLEAR               |
| AC04: Appearance         | BGD - 25-JUN-2013 09:30                        | SLIGHTY TURBID      |
| AC04: Appearance         | QCU - 25-JUN-2013 10:00                        | CLEAR               |
| AC04: Appearance         | QCD - 25-JUN-2013 10:30                        | CLEAR               |
| AC04: Appearance         | WCD - 25-JUN-2013 08:50                        | CLEAR               |
| AC04: Appearance         | VWD3 - 25-JUN-2013 15:00                       | CLEAR               |
| AC04: Appearance         | VWD4 - 25-JUN-2013 15:00                       | CLEAR               |
| AC04: Odour              | SB2 - 25-JUN-2013 12:00                        | NIL                 |
| AC04: Odour              | SB9 - 25-JUN-2013 11:30                        | NIL                 |
| AC04: Odour              | SD4 - 25-JUN-2013 13:30                        | NIL                 |
| AC04: Odour              | SD5 - 25-JUN-2013 13:15                        | NIL                 |
| AC04: Odour              | VWD2 - 25-JUN-2013 11:00                       | NIL                 |
| AC04: Odour              | BGD - 25-JUN-2013 09:30                        | NIL                 |
| AC04: Odour              | QCU - 25-JUN-2013 10:00                        | NIL                 |
| AC04: Odour              | QCD - 25-JUN-2013 10:30                        | NIL                 |
| AC04: Odour              | WCD - 25-JUN-2013 08:50                        | NIL                 |
| AC04: Odour              | VWD3 - 25-JUN-2013 15:00                       | NIL                 |
| AC04: Odour              | VWD4 - 25-JUN-2013 15:00                       | NIL                 |
| AC04: Colour             | SB2 - 25-JUN-2013 12:00                        | CLEAR               |
| AC04: Colour             | SB9 - 25-JUN-2013 11:30                        | CLEAR               |
| AC04: Colour             | SD4 - 25-JUN-2013 13:30                        | CLEAR               |
| AC04: Colour             | SD5 - 25-JUN-2013 13:15                        | CLEAR               |
| AC04: Colour             | VWD2 - 25-JUN-2013 11:00                       | CLEAR               |
| AC04: Colour             | BGD - 25-JUN-2013 09:30                        | SLIGHTLY TURBID     |
| AC04: Colour             | QCU - 25-JUN-2013 10:00                        | CLEAR               |
| AC04: Colour             | QCD - 25-JUN-2013 10:30                        | CLEAR               |
| AC04: Colour             | WCD - 25-JUN-2013 08:50                        | CLEAR               |
| AC04: Colour             | VWD3 - 25-JUN-2013 15:00                       | CLEAR               |
| AC04: Colour             | VWD4 - 25-JUN-2013 15:00                       | CLEAR               |

# Werris Creek Coal Community Consultative Committee

# <u>Twenty Ninth Meeting of the Committee</u> <u>Training Room, Werris Creek Coal</u> <u>9:30am Thursday 21<sup>st</sup> November 2013</u> <u>MINUTES</u>

Werris Creek Coal (WCC) Community Consultative Committee (CCC) met at 9:30am and had a pit tour of the mine site after the meeting. The CCC inspected the rehabilitation, overburden emplacement, eastern lookout in pit, mine infrastructure area and train load out facility.

#### 1. Record of Attendance:

Present: Gae Swain (Independent Chairperson); Noel Taylor (Community Representative); Geoff Dunn (Community Representative); Lindsay Bridge (Community Representative); Col Stewart (Liverpool Plains Shire Council - Councilor); Peter Easey (WCC Operations Manager) and Andrew Wright (WCC Environmental Officer and Minute Taker).

Apologies: Jill Coleman (Community Representative) and Ron Van Katwyk (Liverpool Plains Shire Council – Director Environmental Services).

#### 2. Declaration of Pecuniary or Other Interests

Noel Taylor declared that his son works for Werris Creek Coal.

#### 3. New Matters for Discussion under General Business

Water Evaporator on Large Dam.

#### 4. Minutes of Previous Meeting

Minutes of the previous meeting on the 29<sup>th</sup> August 2013 were accepted as true and accurate representation of business conducted on that day.

Moved: Lindsay Bridge. Seconded: Ron Van Katwyk. Motion carried.

#### 5. Matters Arising

#### a) Actions from Previous Meeting

Lindsay Bridge attempted to coordinate a meeting between WCC and an aggrieved resident of Werris Creek in relation to mining impacts that was not willing to make an official complaint. The resident did not wish to meet with WCC. The committee agreed that an attempt had been made and if the resident did not wish to progress the matter further, then the matter is considered closed.

b) Other Matters Arising

None.

#### 6. Environmental Monitoring Report: August, September and October 2013

**Meteorology** – The three month period was dry and rainfall below average with just over 50mm received. The prevailing wind direction was from the north-north west typical of the autumn period. **Air Quality** – Dust results for August were below average while the prevailing dry conditions during September and October affected regional air quality with all results above the annual average at each location. There was one elevated result above the daily criteria on 30<sup>th</sup> September at "Glenara" recording 56.4µg/m<sup>3</sup>; it is unknown what local or agricultural contribution to dust levels were on this day. Bushfire smoke and ambient dust impacted regional air quality during October with smoke from the Port Stephens bushfire particularly affecting regional air quality on 18<sup>th</sup> October 2013 with 15 minute PM10 readings peaking at 158.7µg/m<sup>3</sup> but not causing the daily PM10 average above 50µg/m<sup>3</sup>. There were five dust complaints during the period; three related to the open cut mine and two related to the train load out facility. Open cut mine dust complaints occurred during periods of high winds. A review of operations did not identify excessive dust with operations managed appropriately to mitigate dust leaving site. The real time PM10 dust levels as measured in Werris Creek at the time of each complaint were below the 30µg/m<sup>3</sup> criteria indicating good air quality.

**Noise** – There was one noise exceedance recorded during September 2013. Attended noise monitoring was undertaken on Thursday 19<sup>th</sup> September 2013 with a noise level of 39dB(A) recorded at R97 (+4dBA over criteria) due to westerly winds and strip orientation/location of excavators only 2.5km away and directly towards the property. The EPA has responded acknowledging that as this property does not have a residence, it is not considered an exceedance in accordance with the Environment Protection Licence. There was only one noise complaint during the period from the property owner of R97. WCC has offered to negotiate a private agreement with the owner of R97 but was declined.

**Blasting** – During the period a total of thirty blasts were fired by the blasting contractor, Orica Mining Services. All blasts over the period complied with maximum license limits (120d(B)L and 10mm/s) with no blast overpressure levels above 115dB(L) or vibration levels over 5mm/s for the three month period. There were ten blast complaints during the period from eight separate blast events. The continuation of blasting complaints is believed to be due the sensitization of the Werris Creek community by an elevated overpressure from the blast on 8<sup>th</sup> July 2013. WCC are continuing to balance blasting to minimise community impact while also producing enough blasted inventory to achieve the budgeted 2.5Mt coal production rate for 2013-2014.

**Groundwater** – All groundwater levels are within longer term averages and the Site Water Management Plan trigger values.

**Surface Water** – All onsite and offsite water quality is consistent with longer term averages and within the Site Water Management Plan trigger values.

**Surface Water Discharges** – The August 2013 dirty water discharge was in compliance with WCC's Environmental Protection Licence 12290 and there were no impacts on water quality monitored in Quipolly and Werris Creeks' catchments as a result of the dirty water discharge event.

**Complaints** – There were eighteen complaints received during the period. There were ten complaints related to blasting; five complaints related to dust; two complaints related to lights and one complaint relating to noise. There were nine different complainants during the period with fifteen complaints from Werris Creek residents and three complaints from Quipolly residents.

Motion moved to accept the Environmental Monitoring Report for August, September and October 2013.

Moved: Col Stewart. Seconded: Noel Taylor. Motion Carried.

#### 7. General Business

#### a. Community Enhancement Fund (CEF) Update

The lift at the Werris Creek Railway Museum and fire early warning system should be installed and operational by the end of 2013.

Andrew Wright tabled a letter from a Werris Creek resident regarding the lack of public seating along the length of Single Street especially for the older residents and wondered if the Community Enhancement Fund might be able to purchase seating for the main street. The committee supported the merits of the project, but requested WCC to write a letter to LPSC to determine whether there was a program planned for public seating in Single Street.

#### b. CCC Community Representative Vacancy

Andrew Wright advised that the CCC needed to have between three and five community representatives, even with the vacancy there is currently four community representatives. The committee requested WCC to advertise for nominations for the vacant Community Representative position.

#### c. Community Meeting regarding Blasting

A community meeting on the 6<sup>th</sup> November 2013 was organised by Kevin Anderson (Tamworth Member of NSW Parliament) with Werris Creek residents who signed a petition regarding concerns over blasting. Whitehaven Coal will respond to Kevin Anderson outlining the progress of suggestions and ideas that were raised at the meeting; including feedback from the community on improving the blast notification process and more regular communication (increased frequency of newsletters and community meetings).

#### d. EPA Audit of Werris Creek Coal

The Environment Protection Authority (EPA) undertook an unannounced audit of WCC on 7<sup>th</sup> November 2013 focusing on blast compliance with WCC's Environmental Protection Licence 12290 and best practice blasting. The EPA found WCC to be generally compliant with an audit report to be prepared outlining whether any further actions are required.

#### e. Water Evaporation on Large Dam

Noel Taylor enquired regarding the water spray on a large dam that could be seen from Werris Creek Road. Andrew Wright outlined that the device was an evaporator with the purpose to evaporate on average 0.5ML of void water per day to ease the pressure on the excess water stored in pit and on the surface at WCC. The excess water was from the heavy rainfall from earlier in the year resulting in the lowest coal seams being underwater which is an issue for mining. The evaporator was the only option available to WCC that was generally in accordance with its environmental approvals not causing additional environmental impacts. As void water is from the pit, it is slightly salty and therefore is not allowed to be discharged or transferred offsite either to a creek or for use in irrigation.

#### Meeting Closed 11:00pm.

#### Next Meeting scheduled for Thursday 27<sup>th</sup> February 2014.

**Copy to:** Gae Swain Jill Coleman Noel Taylor Lindsay Bridge Roslyn Marr Geoff Dunn

Ron Van Katwyk Cr Col Stewart Stephen O'Donoghue Simon Lund Lindsay Fulloon

Independent Chairperson Community Representative Community Representative Community Representative Community Representative Community Representative

LPSC LPSC DoPl DRE EPA

Peter Easey Danny Young Andrew Wright Werris Creek Coal Whitehaven Coal Werris Creek Coal



# WERRIS CREEK COAL PTY LTD

# **QUARTERLY ENVIRONMENTAL MONITORING**

# REPORT

# August, September and October 2013

This Environmental Monitoring Report covers the period 1<sup>st</sup> August 2013 to 31<sup>st</sup> October 2013 for the Werris Creek No.2 Coal Mine Community Consultative Committee.

The report includes environmental monitoring results from the on-site Weather Station, Air Quality, Noise, Blasting, Surface Water, Groundwater and Discharge Water Quality together with any community complaints received and general details on site environmental matters.

**Note:** Monitoring results with any non compliance of monitoring criteria are highlighted in yellow.

# CONTENTS

| 1.0   | METEOROLOGY                              | .3  |
|-------|------------------------------------------|-----|
| 1.1   | WEATHER STATION                          | . 3 |
| 2.0   | AIR QUALITY                              | .3  |
| 2.1   | HVAS (PM10) and TEOM (PM10 & PM2.5)      | . 3 |
| 2.1.1 | Monitoring Data Results                  | . 4 |
| 2.1.2 | Discussion - Compliance / Non Compliance | . 4 |
| 2.2   | WERRIS CREEK MINE DEPOSITED DUST         | . 4 |
| 2.2.1 | Monitoring Data Results                  | . 4 |
| 2.2.2 | Discussion - Compliance / Non Compliance | . 5 |
| 2.3   | QUIRINDI TRAIN DUST DEPOSITION           | . 5 |
| 2.3.1 | Monitoring Data Results                  | . 5 |
| 2.3.2 | Discussion - Compliance / Non Compliance | . 5 |
| 2.4   | AIR QUALITY COMPLAINTS                   | . 5 |
| 3.0   | NOISE                                    | .6  |
| 3.1   | OPERATIONAL NOISE                        | . 6 |
| 3.1.1 | Monitoring Data Results                  | . 6 |
| 3.1.2 | Discussion - Compliance / Non Compliance | . 7 |
| 3.2   | NOISE COMPLAINTS                         | . 7 |
| 4.0   | BLAST                                    | .7  |
| 4.1   | BLAST MONITORING                         | . 8 |
| 4.1.1 | Monitoring Data Results                  | . 8 |
| 4.1.2 | Discussion - Compliance / Non Compliance | . 8 |
| 4.2   | BLAST COMPLAINTS                         | . 8 |
| 5.0   | WATER                                    | .8  |
| 5.1   | GROUND WATER                             | . 8 |
| 5.1.1 | Monitoring Data Results                  | . 9 |
| 5.1.2 | Discussion - Compliance / Non Compliance | . 9 |
| 5.2   | SURFACE WATER                            | . 9 |
| 5.2.1 | Monitoring Data Results                  | . 9 |
| 5.2.2 | Discussion - Compliance / Non Compliance | 10  |
| 5.3   | SURFACE WATER DISCHARGES                 | 10  |
| 5.3.1 | Monitoring Data Results                  | 10  |
| 5.3.2 | Discussion - Compliance / Non Compliance | 10  |
| 5.5   |                                          | 10  |
| U.U   |                                          |     |
| 1.0   | GENEKAL                                  | 11  |

# **APPENDICES**

| Appendix 1 | .Dust Monitoring Results - PM10 and PM2.5 |
|------------|-------------------------------------------|
| Appendix 2 | Dust Monitoring Results – Deposited Dust  |
| Appendix 3 | Train Dust Deposition Monitoring          |
| Appendix 4 | .Noise Monitoring Results                 |
| Appendix 5 | Blasting Monitoring Results               |
| Appendix 6 | .Groundwater Monitoring Results           |
| Appendix 7 | Surface Water Monitoring Results          |
| Appendix 8 | Discharge Monitoring Results              |

# 1.0 METEOROLOGY

#### 1.1 WEATHER STATION

Werris Creek Coal (WCC) collects meteorological data from the onsite weather station located on the top level of the overburden emplacement and from the continuous noise monitoring units located at Quipolly and Werris Creek. The following table summarises temperature, inversion and rainfall data for the last three months and wind data is presented below in windroses. The three month period was dry and rainfall below average with just over 50mm received. The prevailing wind direction was from the north-north west typical of the autumn period.

| Month          | Q<br>Te | uipol<br>mp (' | lly<br>°C) | Wer<br>Te | ris C<br>mp ( | Creek<br>°C) |      | CC T<br>C) 1( | emp<br>)m | Lapse<br>(°C/1 | Rate<br>00m) |        | Rainfa | all (m | m)      |
|----------------|---------|----------------|------------|-----------|---------------|--------------|------|---------------|-----------|----------------|--------------|--------|--------|--------|---------|
|                | Min     | Avg            | Max        | Min       | Avg           | Max          | Min  | Avg           | Max       | Avg            | 90%          | Onsite | Quip   | WC     | Annual* |
| August 2013    | -5.8    | 9.7            | 25.1       | -2.0      | 12.5          | 24.8         | -0.1 | 12.8          | 24.2      | +2.4           | +9.6         | 2.4    | 0.6    | 3.2    | 158.9   |
| September 2013 | 0.8     | 15.2           | 31.4       | 4.2       | 17.9          | 31.2         | 6.9  | 18.2          | 30.4      | +2.7           | +10.4        | 39.6   | 7.2    | 27.0   | 198.5   |
| October 2013   | 0.3     | 17.8           | 33.1       | 3.5       | 19.6          | 32.8         | 5.4  | 19.7          | 32.1      | +1.5           | +9.8         | 11.2   | 8.4    | 10.2   | 209.7   |

\* Annual cumulative total since July 2012 to June 2013 from a composite data set based on the onsite Weather Station at WCC.



# 2.0 AIR QUALITY

#### 2.1 HVAS (PM10) and TEOM (PM10 & PM2.5)

WCC operates five High Volume Air Sampler (HVAS) measuring particulate matter less than 10 micron (PM10) and total suspended particulate (TSP) matter at four sites. HVAS sampling is scheduled for 24 hours every 6 days in accordance with Environment Protection Authority (EPA) guidelines and results are reported as micro grams per cubic metre ( $\mu$ g/m<sup>3</sup>) of air sampled. In addition, WCC operates a Tapered Element Oscillating Microbalance (TEOM) monitor in Werris Creek measuring real time PM10 and PM2.5 (particulate matter less than 2.5 micron) dust levels.

PM2.5 – TEOM92 "Werris Creek" PM10 – TEOM92 "Werris Creek" PM10 – HVP20 "Tonsley Park" PM10 – HVP1 "Escott" PM10 – HVP20 "Glenara" PM10 – HVP98 "Kyooma" TSP – HVT98 "Kyooma"

#### 2.1.1 Monitoring Data Results

The average results for the last three months are provided in the table below; however see HVAS/TEOM monitoring data under **Appendix 1** for individual results.

|                                           | August 2013                                     | September                    | October                      | 2012 2013                    | Criteria | Criteria (µg/m <sup>3</sup> ) |  |
|-------------------------------------------|-------------------------------------------------|------------------------------|------------------------------|------------------------------|----------|-------------------------------|--|
| Monitor Location                          | $\frac{\text{August 2013}}{(\mu \text{g/m}^3)}$ | 2013<br>(µg/m <sup>3</sup> ) | 2013<br>(µg/m <sup>3</sup> ) | Average (µg/m <sup>3</sup> ) | Annual   | Daily                         |  |
| PM2.5 – TEOM92<br>"Werris Creek"          | 6.2                                             | 8.1                          | 8.2                          | 6.8                          | 8        | 25                            |  |
| PM10 – TEOM92<br>"Werris Creek"           | 9.9                                             | 15.3                         | 16.6                         | 12.1                         | 30       | 50                            |  |
| PM10 – HVP20 "Tonsley<br>Park"            | 13.5                                            | 21.4                         | 27.2                         | 16.1                         | 30       | 50                            |  |
| PM10 - HVP4/HVP1<br>"Eurunderee"/"Escott" | 7.5                                             | 14.3                         | 17.0                         | 9.7                          | 30       | 50                            |  |
| PM10 – HVP20<br>"Glenara"                 | 12.6                                            | 25.2                         | 34.9                         | 17.3                         | 30       | 50                            |  |
| PM10 – HVP98<br>"Kyooma"                  | 8.6                                             | 14.0                         | 15.9                         | 9.4                          | 30       | 50                            |  |
| TSP – HVT98 "Kyooma"                      | 14.1                                            | 26.5                         | 26.7                         | 19.5                         | 90       | -                             |  |

#### 2.1.2 Discussion - Compliance / Non Compliance

The PM10 and PM2.5 dust results for August were below average for all monitoring locations, while the prevailing dry conditions during September and October affected regional air quality with all results above the annual average at each location.

There was one elevated result above the daily criteria on  $30^{\text{th}}$  September at "Glenara" recording 56.4µg/m<sup>3</sup>. The wind on the  $30^{\text{th}}$  September was a moderate north northwesterly with the upwind HVAS (unaffected by WCC) at "Tonsley Park" recording 22.6µg/m<sup>3</sup>, consistent with the EPA monitor in Tamworth recording 20.5µg/m<sup>3</sup> while the Werris Creek TEOM recorded  $13.6µg/m^3$ . Being conservative and assuming the upwind dust contribution on the  $30^{\text{th}}$  September was  $13.6µg/m^3$ ; then the worst case WCC dust contribution to "Glenara" was  $42.8µg/m^3$  and in compliance with the daily (24 hour incremental) criteria of  $50µg/m^3$  in PA10\_0059. In is unknown what local or agricultural contribution to dust levels occurred on the  $30^{\text{th}}$  September 2013.

Bushfire smoke and ambient dust impacted regional air quality during October with smoke from the Port Stephens bushfire particularly affecting regional air quality on 18th October 2013 with 15 minute PM10 readings peaking at 158.7µg/m<sup>3</sup> but not causing the daily PM10 average above 50µg/m<sup>3</sup>.

#### 2.2 WERRIS CREEK MINE DEPOSITED DUST

Deposited dust monitoring measures particulate matter greater than 30 micron in size that readily settles out of the air related to visual impact. Dust deposition is monitored at 20 locations around WCC. Sampling is scheduled monthly in accordance with EPA guidelines and results are reported as grams per metre squared per month ( $g/m^2/month$ ).

#### 2.2.1 Monitoring Data Results

The results for the last three months are provided in the table below; however **Appendix 2** has more information on Deposited Dust Monitoring Results.

| Monitor<br>Location | August 2013<br>(g/m <sup>2</sup> /month) | September<br>2013<br>(g/m <sup>2</sup> /month) | October<br>2013<br>(g/m <sup>2</sup> /month) | 2012-2013<br>Average<br>(g/m <sup>2</sup> /month) | Annual<br>Criteria<br>(g/m <sup>2</sup> /month) |
|---------------------|------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| "Cintra"            | 0.4                                      | 2.2                                            | 0.5                                          | 1.6                                               | 4.0                                             |
| "Railway View"      | 0.5                                      | 1.2                                            | 1.0                                          | 0.9                                               | 4.0                                             |
| "Tonsley Park"      | 0.4                                      | *1.4                                           | 0.5                                          | 0.7                                               | 4.0                                             |
| "Plain View"        | 1.1                                      | 0.8                                            | 0.7                                          | 1.2                                               | 4.0                                             |
| "Marengo"           | 0.5                                      | 0.6                                            | 0.5                                          | 0.6                                               | 4.0                                             |
| "Mountain View"     | 0.5                                      | 2.8                                            | 1.3                                          | 1.2                                               | 4.0                                             |
| "Glenara"           | 0.8                                      | 1.1                                            | 0.9                                          | 0.5                                               | 4.0                                             |

| Monitor<br>Location | August 2013<br>(g/m <sup>2</sup> /month) | September<br>2013<br>(g/m <sup>2</sup> /month) | October<br>2013<br>(g/m <sup>2</sup> /month) | 2012-2013<br>Average<br>(g/m <sup>2</sup> /month) | Annual<br>Criteria<br>(g/m <sup>2</sup> /month) |
|---------------------|------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| "Hazeldene"         | 0.4                                      | 0.6                                            | 0.7                                          | 0.5                                               | 4.0                                             |
| "Woodlands"         | 0.5                                      | 0.5                                            | 1.3                                          | 0.7                                               | 4.0                                             |
| "Talavera"          | 0.4                                      | 0.6                                            | 0.5                                          | 0.4                                               | 4.0                                             |
| "Kyooma"            | 0.2                                      | 0.3                                            | 0.4                                          | 0.2                                               | 4.0                                             |
| "Greenslopes"       | 0.3                                      | 0.6                                            | 0.3                                          | 0.4                                               | 4.0                                             |
| Werris Creek South  | 0.2                                      | 0.3                                            | 0.3                                          | 0.4                                               | 4.0                                             |
| Werris Creek Centre | 0.1                                      | 0.3                                            | 0.2                                          | 0.4                                               | 4.0                                             |
| "Westfall"          | 0.4                                      | 0.6                                            | 0.7                                          | 0.6                                               | 4.0                                             |
| West Street         | 0.5                                      | 0.6                                            | 0.5                                          | 0.6                                               | 4.0                                             |
| "Escott"            | 0.2                                      | *0.5                                           | 5.0*                                         | 1.5                                               | 4.0                                             |
| "Eurunderee"        | 0.6                                      | 1.6                                            | 0.2                                          | 0.7                                               | 4.0                                             |
| 8 Kurrara St        | 0.2                                      | 0.6                                            | 0.3                                          | 10.8                                              | 4.0                                             |
| "Villamagna"        | 0.4                                      | 0.4                                            | 3.0*                                         | 0.8                                               | 4.0                                             |

\* - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e. bird droppings and insects); c - indicates sample is contaminated from a Non-Werris Creek Coal dust source.

#### 2.2.2 Discussion - Compliance / Non Compliance

All monthly dust deposition gauge results for August, September and October were below the annual criteria of  $4.0g/m^2/month$  except for the "Escott" dust gauge in October 2013. The prevailing dry conditions during September and October affected regional air quality with the results being generally above the annual average. A couple of results were contaminated with organic matter (>50%) including the "Escott" October result which is not representative of mining dust emissions.

#### 2.3 QUIRINDI TRAIN DUST DEPOSITION

#### 2.3.1 Monitoring Data Results

The results for the last three months are provided in the table below; however **Appendix 3** has more information on the Train Dust Monitoring Results.

| Monitor  | August                  | 2013   | Septembe                | r 2013 | October                 | Annual |                           |
|----------|-------------------------|--------|-------------------------|--------|-------------------------|--------|---------------------------|
| Location | g/m <sup>2</sup> /month | % Coal | g/m <sup>2</sup> /month | % Coal | g/m <sup>2</sup> /month | % Coal | (g/m <sup>2</sup> /month) |
| DDW30    | 0.8                     | 5%     | 1.2                     | -      | -                       | -      | 1.1                       |
| DDW20    | 0.5                     | 10%    | 1.1                     | -      | 1.9                     | 20%    | 0.7                       |
| DDW13    | 0.5                     | 35%    | 1.7                     | -      | 1.4                     | 40%    | 0.7                       |
|          |                         |        | Trai                    | n Line |                         |        |                           |
| DDE13    | 0.7                     | 30%    | 1.8                     | -      | 2.9                     | 70%    | 0.8                       |
| DDE20    | 0.6                     | 30%    | 1.2                     | -      | 2.4                     | 60%    | 1.0                       |
| DDE30    | 0.9                     | 5%     | 1.0                     | -      | 3.1                     | 20%    | 0.9                       |

#### 2.3.2 Discussion - Compliance / Non Compliance

Overall the dust fall out levels adjacent to the train line are low (well below the impact assessment criteria nominated by the EPA of 4.0 g/m<sup>2</sup>/month) and comparable to the levels monitored around WCC. In September 2013, a mistake with the dust sample Chain of Custody form meant that samples were not microscopically analysed for coal this month. In October 2013, the DDW30 dust gauge (next to Hawkins Street) was vandalized and no sample was able to be collected.

For October, the dust gauges to the east of the rail line were clearly higher due to coal dust from passing coal trains by the dominate north westerly winds. While dust levels were elevated for the month, they were still below the EPA set 4.0g/m<sup>2</sup>/month dust impact criteria.

#### 2.4 AIR QUALITY COMPLAINTS

There were five dust complaints during the period; three related to the open cut mine and two related to the train load out facility. Open cut mine dust complaints occurred on 8<sup>th</sup> August, 9<sup>th</sup> September and 17<sup>th</sup>, 19<sup>th</sup> and 23<sup>rd</sup> October during periods of high winds. A review of operations did not identify excessive dust with operations managed appropriately to mitigate dust leaving site. The real time PM10 dust levels as measured in

Werris Creek at the time of each complaint were below the  $30\mu g/m^3$  criteria indicating good air quality. At the time of the two dust complaints for the train load out facility on  $17^{th}$  and  $19^{th}$  October, all truck and dozer operations were suspended to prevent excessive dust being generated. Specific actions taken in relation to each of these complaints are outlined in **Section 6**.

### 3.0 NOISE

#### 3.1 OPERATIONAL NOISE

Monthly attended noise monitoring is undertaken representative of the following 16 properties from 13 monitoring points below. Attended noise monitoring was undertaken twice for either 60 minutes at privately owned properties or 15 minutes at properties with private agreements; representative of the day period and the evening/night period.

- o A "Rosehill" R5;
- o B1 "Almawille" (private agreement) R8;
- o B1 83 Wadwells Lane R7;
- o B2 "Mountain View" R22;
- o B2 "Gedhurst" R9;
- C "Meadholme" (private agreement) R10;
- C "Glenara" (private agreement) R11;
- o D "Hazeldene" R24;
- E "Railway Cottage" R12;
- o F "Talavera" R96;
- o **G R97**;
- H "Kyooma" (private agreement) R98;
- o I Kurrara St, Werris Creek;
- o J Coronation Ave, Werris Creek;
- o K "Alco Park" (private agreement) R21; and
- o L R103.

#### 3.1.1 Monitoring Data Results

The WCC operations only noise level (not ambient noise) results for the last three months are outlined below; however see Monthly Noise Monitoring Reports under **Appendix 4** for more detail.

|    | Location                    | Day dB(A)             | Criteria dB(A)        | <b>Evening/Night</b>        | Criteria dB(A)        |
|----|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
|    | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| Α  | "Rosehill" R5               | Inaudible#            | 35                    | Inaudible#                  | 35                    |
| B1 | West Quipolly R7, R8*       | Inaudible#            | 37                    | Inaudible                   | 37                    |
| B2 | West Quipolly R9 & R22      | Inaudible #           | 37/36 <sup>1</sup>    | Inaudible#                  | 37/36 <sup>1</sup>    |
| С  | Central Quipolly R10*, R11* | Inaudible#            | 39                    | Inaudible                   | 39                    |
| D  | "Hazeldene" R24             | Inaudible#            | 37                    | Inaudible#                  | 37                    |
| Е  | "Railway Cottage" R12       | Inaudible#            | 38                    | Inaudible#                  | 38                    |
| F  | "Talavera" R96              | 25#                   | 38                    | 32                          | 37                    |
| G  | R97                         | 32#                   | 35                    | 25#                         | 35                    |
| Н  | " <b>Kyooma</b> " R98*      | 26#                   | 36                    | 32                          | 36                    |
| Ι  | Kurrara St, WC              | Inaudible#            | 35                    | Barely audible#             | 35                    |
| J  | Coronation Ave, WC          | Inaudible#            | 35                    | 30                          | 35                    |
| K  | South St, WC R21*           | Inaudible#            | 39                    | 34#                         | 37                    |
| L  | West St, WC R103            | Inaudible#            | 35                    | 34#                         | 35                    |

Thursday 8<sup>th</sup> August 2013

#### Thursday 19<sup>th</sup> September 2013

|          | Location                   | Day dB(A)             | Criteria dB(A)        | <b>Evening/Night</b>        | Criteria dB(A)        |
|----------|----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
| Location |                            | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| Α        | "Rosehill" R5              | Inaudible#            | 35                    | Inaudible#                  | 35                    |
| B1       | West Quipolly R7, R8*      | Inaudible#            | 37                    | Inaudible#                  | 37                    |
| B2       | West Quipolly R9 & R22     | Inaudible#            | 37/36 <sup>1</sup>    | Inaudible#                  | 37/36 <sup>1</sup>    |
| С        | Central Quipolly R10*,R11* | Barely audible#       | 39                    | Inaudible#                  | 39                    |
| D        | "Hazeldene" R24            | Barely audible#       | 37                    | Inaudible#                  | 37                    |
| E        | "Railway Cottage" R12      | Inaudible#            | 38                    | Inaudible                   | 38                    |
| F        | "Talavera" R96             | Barely audible#       | 38                    | 36#                         | 37                    |
| G        | R97                        | Barely audible#       | 35                    | 39                          | 35                    |
| Н        | "Kyooma" R98*              | 27#                   | 36                    | 42                          | 36                    |
| Ι        | Kurrara St, WC             | Inaudible#            | 35                    | 32                          | 35                    |
| J        | Coronation Ave, WC         | Inaudible#            | 35                    | 34                          | 35                    |
| K        | South St, WC R21*          | Inaudible#            | 39                    | 34                          | 37                    |
| L        | West St, WC R103           | Inaudible#            | 35                    | 31                          | 35                    |

#### Tuesday 22<sup>nd</sup> & 23<sup>rd</sup> October 2013

| Location |                             | Day dB(A)             | Criteria dB(A)        | <b>Evening/Night</b>        | Criteria dB(A)        |
|----------|-----------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|
|          | Location                    | L <sub>eq 15min</sub> | L <sub>eq 15min</sub> | dB(A) L <sub>eq 15min</sub> | L <sub>eq 15min</sub> |
| Α        | "Rosehill" R5               | Inaudible#            | 35                    | Inaudible#                  | 35                    |
| B1       | West Quipolly (R7, R8*)     | Inaudible#            | 37                    | 34#                         | 37                    |
| B2       | West Quipolly (R9 & R22)    | Inaudible#            | 37/36 <sup>1</sup>    | 28#                         | 37/36 <sup>1</sup>    |
| С        | Central Quipolly(R10*,R11*) | 32                    | 39                    | 32#                         | 39                    |
| D        | "Hazeldene" R24             | Barely audible#       | 37                    | 25#                         | 37                    |
| Е        | "Railway Cottage" R12       | Inaudible#            | 38                    | 32                          | 38                    |
| F        | "Talavera" R96              | 27#                   | 38                    | 32#                         | 37                    |
| G        | R97                         | Barely audible#       | 35                    | 33#                         | 35                    |
| Н        | " <b>Kyooma</b> " R98*      | 23#                   | 36                    | 35#                         | 36                    |
| Ι        | Kurrara St, WC              | Inaudible#            | 35                    | Inaudible#                  | 35                    |
| J        | Coronation Ave, WC          | Inaudible#            | 35                    | Inaudible#                  | 35                    |
| K        | South St, WC (R20*, R21*)   | Inaudible#            | 39                    | Barely audible#             | 37                    |
| L        | West St, WC (R103)          | Inaudible#            | 35                    | Inaudible#                  | 35                    |

WC – Werris Creek; \* - Private agreement in place with resident; Yellow Bold – Elevated noise; # Adverse weather with wind >3m/s, temperature inversions  $>+12^{\circ}$ C/100m or >2m/s and >0°C/100m; 1 – R22 criteria is 36 dB(A) L<sub>eq 15min</sub> while R9 is 37 dB(A) L<sub>eq 15min</sub>

#### 3.1.2 Discussion - Compliance / Non Compliance

There was one noise exceedance recorded during September 2013. Attended noise monitoring was undertaken on Thursday 19<sup>th</sup> September 2013 with a noise level of 39dB(A) recorded at R97 (+4dBA over criteria) due to westerly winds and strip orientation/location of excavators only 2.5km away and directly towards the property. The EPA has responded acknowledging that as this property does not have a residence, it is not considered an exceedance in accordance with the Environment Protection Licence.

#### 3.2 NOISE COMPLAINTS

There was only one noise complaint during the period from the property owner of R97 that recorded an exceedance on 19<sup>th</sup> September 2013. WCC has offered to negotiate a private agreement with the owner of R97 but was declined. Specific actions taken in relation to this complaint is outlined in **Section 6**.

### 4.0 BLAST

Blast monitoring was undertaken at "Glenara", "Talavera", "Werris Creek" and "Tonsley Park" during the period. Compliance limits for blasting overpressure is 115dBL (and up to 120dBL for only 5% of blasts) and vibration is 5mm/s (and up to 10mm/s for only 5% of blasts). During the period a total of thirty blasts were fired by the blasting contractor, Orica Mining Services.

#### 4.1 BLAST MONITORING

#### 4.1.1 Monitoring Data Results

The summary tables of blasting results over the last three months are provided below; however see the blasting results database under **Appendix 5** for more detail.

| August 2012            | "Gle   | nara"  | "Tonsl | ey Park" | Werris | Creek | "Talavera" |       |  |
|------------------------|--------|--------|--------|----------|--------|-------|------------|-------|--|
| August 2015            | mm/s   | dB(L)  | mm/s   | dB(L)    | mm/s   | dB(L) | mm/s       | dB(L) |  |
| Monthly Average        | < 0.25 | <109.8 | 0.87   | 101.5    | 0.51   | 99.7  | 0.26       | 105.9 |  |
| Monthly Maximum        | < 0.25 | <109.8 | 1.23   | 111.2    | 0.60   | 102.5 | 0.45       | 110.6 |  |
| Annual Average         | 0.32   | 97.6   | 0.86   | 102.0    | 0.47   | 101.9 | 0.17       | 106.8 |  |
| Criteria               | 5      | 115    | 5      | 115      | 5      | 115   | 5          | 115   |  |
| % >115dB(L) or 5mm/s   | 0%     | 0%     | 0%     | 2.8%     | 0%     | 2.8%  | 0%         | 2.8%  |  |
| # Triggered this Month | 0      | /9     | ,      | 7/9      | 5      | /9    | 2/9        |       |  |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| Sontombor 2013         | "Gle   | nara"  | "Tonsl | ey Park" | Werris | Creek | "Talavera" |       |  |
|------------------------|--------|--------|--------|----------|--------|-------|------------|-------|--|
| September 2013         | mm/s   | dB(L)  | mm/s   | dB(L)    | mm/s   | dB(L) | mm/s       | dB(L) |  |
| Monthly Average        | < 0.25 | <109.8 | 0.55   | 99.1     | 0.29   | 99.3  | 0.28       | 93.3  |  |
| Monthly Maximum        | < 0.25 | <109.8 | 0.77   | 103.4    | 0.29   | 102.0 | 0.28       | 93.3  |  |
| Annual Average         | 0.32   | 97.6   | 0.77   | 101.2    | 0.41   | 101.4 | 0.22       | 102.2 |  |
| Criteria               | 5      | 115    | 5      | 115      | 5      | 115   | 5          | 115   |  |
| % >115dB(L) or 5mm/s   | 0%     | 0%     | 0%     | 2.0%     | 0%     | 2.0%  | 0%         | 2.0%  |  |
| # Triggered this Month | 0/     | /13    | 4      | /13      | 2/     | 13    | 1/13       |       |  |

NM - Site not monitored;\* Indicates project related properties not subject to blasting criteria.

| October 2013           | "Gle   | nara"  | "Tonsl | ey Park" | Werris | s Creek | "Talavera" |       |  |
|------------------------|--------|--------|--------|----------|--------|---------|------------|-------|--|
| October 2013           | mm/s   | dB(L)  | mm/s   | dB(L)    | mm/s   | dB(L)   | mm/s       | dB(L) |  |
| Monthly Average        | < 0.25 | <109.8 | 0.86   | 101.6    | 0.48   | 96.7    | 0.41       | 104.1 |  |
| Monthly Maximum        | < 0.25 | <109.8 | 1.54   | 108.4    | 0.66   | 109.5   | 0.50       | 107.1 |  |
| Annual Average         | 0.32   | 97.6   | 0.81   | 101.5    | 0.44   | 100.8   | 0.23       | 104.1 |  |
| Criteria               | 5      | 115    | 5      | 115      | 5      | 115     | 5          | 115   |  |
| % >115dB(L) or 5mm/s   | 0%     | 0%     | 0%     | 1.8%     | 0%     | 1.8%    | 0%         | 1.8%  |  |
| # Triggered this Month | C      | )/8    |        | 7/8      | 7      | /8      | 6/8        |       |  |

NM – Site not monitored,\* Indicates project related properties not subject to blasting criteria; Yellow – overpressure >115dB(L) or vibration >1mm/s.

#### 4.1.2 Discussion - Compliance / Non Compliance

All blasts over the period complied with maximum license limits (120d(B)L and 10mm/s) with no blast overpressure levels above 115dB(L) or vibration levels over 5mm/s for the three month period.

#### 4.2 BLAST COMPLAINTS

There were ten blast complaints during the period from eight separate blast events. The continuation of blasting complaints is believed to be due the sensitization of the Werris Creek community due the elevated overpressure from the blast on 8<sup>th</sup> July 2013. WCC are continuing to balance blasting to minimise community impact while also producing enough blasted inventory to achieve the budgeted 2.5Mt coal production rate for 2013-2014. Specific actions taken in relation to these complaints are outlined in **Section 6**.

### 5.0 WATER

The groundwater monitoring program monitors groundwater levels bi-monthly and groundwater quality six monthly. Surface water monitoring is undertaken quarterly. There was one surface water discharge event during the period.

#### 5.1 GROUND WATER

Groundwater monitoring is undertaken to monitor if there are any impacts on groundwater quality and levels as a result of the mining operations. WCC monitors 35 groundwater bores and piezometers in the key aquifers surrounding the mine including Werrie Basalt (near to WCC and further afield) and Quipolly Creek Alluvium. Bi-monthly groundwater level monitoring and groundwater quality monitoring was completed on 24<sup>th</sup> and 25<sup>th</sup> September 2013.

### 5.1.1 Monitoring Data Results

A summary of groundwater monitoring results is provided below with the field sheets provided in Appendix 6.

|           | Site         | Sept  | 2013 | Previous | pН   | EC   | Comments                                      |
|-----------|--------------|-------|------|----------|------|------|-----------------------------------------------|
| ır        | MW1          | 54.90 | -2%  | 54.06    | 7.64 | 1250 | No rainfall recharge, Level down and pH/EC up |
| Vea       | MW2          | 26.25 | -1%  | 25.91    | 7.77 | 835  | No rainfall recharge, Level down and pH up    |
| lt D      | MW3          | 15.30 | -2%  | 14.97    | 7.45 | 3320 | No rainfall recharge, Level down and pH/EC up |
| asa<br>CC | MW4B         | 10.66 | -6%  | 10.07    | 8.01 | 1030 | No rainfall recharge, Level down and pH/EC up |
| W         | MW5          | 8.53  | -7%  | 7.91     | 7.81 | 2440 | No rainfall recharge, Level down and pH/EC up |
| rie       | MW6          | 12.45 | 0%   | 12.49    | 7.77 | 1890 | No rainfall recharge, pH/EC up                |
| Ver       | P1           | 35.40 | -4%  | 34.05    | -    | -    | No rainfall recharge, Level down              |
| V         | MW27         | 43.46 | -1%  | 43.03    | -    | -    | No rainfall recharge, Level down              |
|           | MW8          | 15.86 | -4%  | 15.28    | -    | -    | No rainfall recharge, Level down              |
| alt       | MW9          | -     | -    | 15.74    | -    | -    | Standpipe needs to be repaired                |
| Bas       | MW10         | 16.93 | 0%   | 17.01    | -    | -    | No rainfall recharge                          |
| ie ]      | <b>MW14</b>  | 17.55 | -1%  | 17.39    | -    | -    | No rainfall recharge, Level down              |
| erri      | <b>MW17B</b> | 9.94  | -3%  | 9.63     | -    | -    | No rainfall recharge, Level down              |
| M         | MW19A        | 5.82  | -2%  | 5.73     | -    | -    | No rainfall recharge, Level down              |
|           | MW20         | 19.71 | -1%  | 19.51    | -    | -    | No rainfall recharge, Level down              |
|           | MW12         | 8.91  | -9%  | 8.10     | -    | -    | No rainfall recharge, Level down              |
|           | MW13         | 4.63  | -1%  | 4.6      | -    | -    | No rainfall recharge, Level down              |
|           | MW13B        | 3.26  | -2%  | 3.19     | -    | -    | No rainfall recharge, Level down              |
|           | MW13D        | 4.69  | -2%  | 4.61     | -    | -    | No rainfall recharge, Level down              |
| m         | MW15         | 4.39  | -6%  | 4.13     | -    | -    | No rainfall recharge, Level down              |
| viu       | MW16         | 4.93  | -6%  | 4.65     | -    | -    | No rainfall recharge, Level down              |
| nIL       | MW17A        | 4.04  | -6%  | 3.79     | -    | -    | No rainfall recharge, Level down              |
| y A       | MW18A        | 3.85  | -7%  | 3.57     | -    | -    | No rainfall recharge, Level down              |
| oll       | MW21A        | 7.10  | -5%  | 6.56     | -    | -    | No rainfall recharge, Level down              |
| dir       | MW22A        | 5.07  | -6%  | 4.77     | -    | -    | No rainfall recharge, Level down              |
| õ         | MW22B        | 5.33  | -8%  | 4.93     | -    | -    | No rainfall recharge, Level down              |
|           | MW23A        | 3.95  | -8%  | 3.64     | -    | -    | No rainfall recharge, Level down              |
|           | MW23B        | 4.70  | -10% | 4.23     | -    | -    | No rainfall recharge, Level down              |
|           | MW28A        | 11.75 | -7%  | 10.91    | -    | -    | No rainfall recharge, Level down              |
|           | MW32         | 4.02  | -2%  | 3.92     | -    | -    | No rainfall recharge, Level down              |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; Dip – is distance in meters from top of bore to groundwater surface; Red – Greater than 15% change/potential compliance issue; Orange – Change decrease; Green – change increase or no change.

#### 5.1.2 Discussion - Compliance / Non Compliance

The extended dry conditions has resulted in no rainfall recharge to aquifers with all monitoring bores groundwater levels declining between 0% and 10% over the period. All groundwater levels are within longer term averages and the Site Water Management Plan trigger values.

#### 5.2 SURFACE WATER

Surface water monitoring is undertaken from local creeks offsite as well as from discharge point dirty water dams to monitor for potential water quality issues. Quarterly surface water monitoring was undertaken on 27<sup>th</sup> August 2013.

#### 5.2.1 Monitoring Data Results

Summary of surface water quality monitoring results is provided below with the laboratory reports provided in **Appendix 7**.

| Site | pН   | EC   | TSS | <b>O&amp;G</b> | Change from Previous Quarter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------|------|------|-----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|      |      |      |     |                | ONSITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| SB2  | 8.37 | 1010 | 7   | <5             | pH decreased 0.29, EC increased 86, TSS decreased 1, O&G no change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| SB9  | 8.10 | 208  | 8   | <5             | pH increased 0.15, EC increased 5, TSS decreased 40, O&G no change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| SB10 | -    | -    | -   | -              | Under construction due to Rail Loop Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|      |      |      |     |                | OFFSITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| QCU  | 7.90 | 470  | 25  | <5             | pH increased 0.16, EC decrease 14, TSS increased 20, O&G no change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| QCD  | 8.05 | 826  | 11  | <5             | view of the state of the sta |  |  |  |  |
| WCU  | -    | -    | -   | -              | Dry – no sample available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| WCD  | 8.43 | 1270 | 15  | <5             | pH increased 0.17, EC decreased 80, TSS increased 3, O&G no change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; TSS – Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G – Oil and Grease measures amount of hydrocarbons (oils and fuels) in water; Orange – Issue with water quality; Green – water quality OK.

#### 5.2.2 Discussion - Compliance / Non Compliance

All onsite and offsite water quality is consistent with longer term averages and within the site water management plan trigger values.

#### 5.3 SURFACE WATER DISCHARGES

#### 5.3.1 Monitoring Data Results

There was one controlled discharge during the period. A summary of discharge monitoring results is provided below with the laboratory reports provided in **Appendix 8**.

| Date       | Dam | pН   | EC   | TSS | <b>0&amp;</b> G | Compliance                            | Туре       | 5 Day Rain     |
|------------|-----|------|------|-----|-----------------|---------------------------------------|------------|----------------|
| 12/08/2013 | SB2 | 8.44 | 1010 | <5  | <5              | Compliant – Water quality in criteria | Controlled | Not Applicable |
| Crite      | ria | 8.5  | N/A  | 50  | 10              |                                       |            |                |

pH – measure of acidity/alkalinity; EC – Electrical Conductivity measures salinity; TSS – Total Suspended Solids is a measure of suspended sediment in water (i.e. similar to turbidity); O&G – Oil and Grease measures amount of hydrocarbons (oils and fuels) in water; Yellow – indicates results outside criteria due to 5 day rain >39.2mm.

#### 5.3.2 Discussion - Compliance / Non Compliance

The August 2013 dirty water discharge was in compliance with WCC's Environmental Protection Licence 12290 and there were no impacts on water quality monitored in Quipolly and Werris Creeks' catchments as a result of the dirty water discharge event.

#### 5.3 WATER COMPLAINTS

There were no water complaints during the period.

#### 6.0 COMPLAINTS SUMMARY

There were eighteen complaints received during the period with the details summarised below. There were ten complaints related to blasting; five complaints related to dust; two complaints related to lights and one complaint relating to noise. There were nine different complainants during the period with fifteen complaints from Werris Creek residents and three complaints from Quipolly residents.

| #                | Date                  | Complainant             | Complaint                                                                                            | Investigation                                                                                                                                                                                                                                 | Action Taken                               |
|------------------|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 322<br>to<br>324 | 06/08/2013<br>Various | Various<br>Werris Creek | Blast shook house and impacted amenity.                                                              | WCC blast #52-2013 (S13_3-7_330 TS37) at<br>13:15 Tuesday 6th August 2013 was in<br>compliance with PA10_0059 and EPL12290.                                                                                                                   | Written response provided to complainants. |
| 325              | 08/08/2013<br>10:16pm | A<br>Werris Creek       | Dust from visual bund dump covering washing.                                                         | OCE inspections did not identify dust off the<br>visual bund dump. Wind from north west<br>blowing (if any dust was generated) away from<br>Werris Creek township.                                                                            | Written response provided to complainant.  |
| 326              | 12/08/2013<br>9:02am  | A<br>Werris Creek       | Bright lights shining in<br>back room from bottom of<br>conveyor at TLO until<br>1:35am.             | Train loaded on 11th August 2013 from 11:15pm<br>to 1:39am from high ash coal stockpile pushing<br>north east towards Werris Creek. Lighting plants<br>were set up correctly and in accordance with<br>Project Approval 10_0059 requirements. | Written response provided to complainant.  |
| 327              | 22/08/2013<br>1:46pm  | AQ<br>Werris Creek      | Blast shook house and impacted amenity.                                                              | WCC blast #56-2013 (S13_8-10_DE Coal UG<br>Collapse) at 13:41 Thursday 22nd August 2013<br>was in compliance with PA10_0059 and<br>EPL12290.                                                                                                  | Written response provided to complainants. |
| 328              | 25/08/2013<br>9:58pm  | A<br>Werris Creek       | Blast shook house and impacted amenity.                                                              | WCC blast #57-2013 (S13_8-10_DE Coal) at<br>13:14 Friday 23rd August 2013 was in<br>compliance with PA10_0059 and EPL12290.                                                                                                                   | Written response provided to complainants. |
| 329              | 02/09/2013<br>11:11pm | A<br>Werris Creek       | Bright lights from TLO<br>impacting on their house<br>preventing them from<br>having a decent night. | Two dozers working at TLO and one train<br>loaded. All lighting plants appropriately set up<br>and in compliance with PA10_0059.                                                                                                              | Written response provided to complainants. |
| 330              | 09/09/2013<br>10:16am | Q<br>Quipolly           | Visible dust coming off<br>mine site and beyond a<br>reasonable haze.                                | Visual inspection did not observe excessive or<br>visual dust off the mine site. General conditions<br>very hazy and PM10 levels in Werris Creek were<br>in compliance.                                                                       | Written response provided to complainant.  |
| 331              | 11/09/2013<br>12:17pm | U<br>Werris Creek       | The blast caused the front windows to rattle.                                                        | WCC blast #68A-2013 (S13_330_Cap Rocks) at 12:16 Wednesday 11th September 2013 was in compliance with PA10_0059 and EPL12290.                                                                                                                 | Written response provided to complainant.  |
| 332              | 18/09/2013<br>1:50pm  | U<br>Werris Creek       | Blast shook house and<br>concerned about impacts to<br>residence however no<br>damage.               | WCC blast #69-2013 (S15_2-6_DE Coal UG<br>Collapse & TSB40) at 13:49 Wednesday 18th<br>September 2013 was in compliance with<br>PA10_0059 and EPL12290.                                                                                       | Written response provided to complainants. |

#### Environmental Monitoring Report

| 333 | 4/10/2013<br>3:50pm   | AQ<br>Werris Creek    | If blast can be felt must be<br>too big and impacting on<br>amenity.                            | WCC blast #75-2013 (S13_18-21_350-<br>330_TSB41 Part 1) at 15:41 Friday 4 <sup>th</sup> October<br>2013 was in compliance with PA10_0059 and<br>EPL12290.                                                                                                                                                                                         | Written response provided to complainant. |
|-----|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 334 | 4/10/2013<br>3:50pm   | AY<br>East of Mine    | Owner wanted to make<br>formal complaint regarding<br>noise exceedance on<br>property R97.      | Noise Exceedance of R97 recorded 39dBA<br>+4dBA above the noise criteria on 19 <sup>th</sup><br>September 2013 due to westerly source to<br>receiver winds.                                                                                                                                                                                       | Written response provided to complainant. |
| 335 | 10/10/2013<br>10:49am | AX<br>Werris Creek    | Blast shook house and<br>rattled windows. Concerned<br>over how often this is now<br>occurring. | WCC blast #76-2013 (S13_18-21_350-<br>330_TSB42) at 10:47 Thursday 10 <sup>th</sup> October<br>2013 was in compliance with PA10_0059 and<br>EPL12290.                                                                                                                                                                                             | Written response provided to complainant. |
| 336 | 22/10/2013<br>10:21am | A/EPA<br>Werris Creek | Dust from Coal Stockpile at<br>2:30pm on 17 <sup>th</sup> October<br>2013.                      | Strong north westerly wind resulted in all<br>operations except water carts suspended between<br>11:30am and 1:30pm on Thursday 17 <sup>th</sup> October.<br>Visual inspections did not observe dust offsite<br>although conditions were hazy. Real time dust<br>monitoring was elevated but considered to be<br>good air quality PM10 25.9µg/m3. | Written response provided to EPA.         |
| 337 | 22/10/2013<br>10:21am | A/EPA<br>Werris Creek | Dust from Coal Stockpile<br>between 2:30pm and 4pm<br>on 19 <sup>th</sup> October 2013.         | Light westerly wind not dusty. TLO worked half<br>shift on Saturday 19 <sup>th</sup> October finishing at<br>12:30pm. Visual inspections did not observe dust<br>offsite. Real time dust monitoring was<br>considered to be good air quality PM10<br>13.0µg/m3.                                                                                   | Written response provided to EPA.         |
| 338 | 24/10/2013<br>2:44pm  | A/EPA<br>Werris Creek | Dust from Overburden area<br>between 2pm and 2:45pm<br>on 23 <sup>rd</sup> October 2013.        | Strong westerly wind prevailing on 23 <sup>rd</sup> October.<br>Visual inspections did not observe dust offsite<br>although conditions were hazy. Real time dust<br>monitoring was elevated but considered to be<br>good air quality PM10 26.1µg/m3.                                                                                              | Written response provided to EPA.         |
| 339 | 28/10/2013<br>2:28pm  | Anonymous/ EPA        | Dust cloud from blast<br>visible from Kamilaroi<br>Highway.                                     | WCC blast #80-2013 (S13_7_DE Coal Wedge)<br>at 13:08 Monday 28 <sup>th</sup> October 2013 was in<br>compliance with PA10_0059 and EPL12290.<br>Shot was small but dusty due to prevailing dry<br>conditions.                                                                                                                                      | Written response provided to EPA.         |

# 7.0 GENERAL

Please feel free to ask any questions in relation to the information contained within this document during Item 7 of the meeting agenda.

Regards Andrew Wright Environmental Officer

# Appendix 1 – Dust Monitoring Results – PM10

#### Werris Creek Coal HVAS TEOM Dust Monitoring 2013-2014

| Site                   | 2.5TEOM92<br>Werris | Monthly    | Annual  | 10TEOM92<br>Werris | EPL#30<br>Monthly | Annual  | HVP20<br>Tonslev | EPL#1<br>Monthly | Rolling<br>Annual | HVP98      | EPL#28<br>Monthly | Rolling<br>Annual | HVP1       | Monthly     | Rolling<br>Annual | HVP11       | EPL#29<br>Monthly | Rolling<br>Annual | HVT98       | Monthly      | Rolling<br>Annual | PM10<br>24hr | PM10<br>Annual | TSP<br>Annual |
|------------------------|---------------------|------------|---------|--------------------|-------------------|---------|------------------|------------------|-------------------|------------|-------------------|-------------------|------------|-------------|-------------------|-------------|-------------------|-------------------|-------------|--------------|-------------------|--------------|----------------|---------------|
| Date                   | Creek               | Summary    | Average | Creek              | Summary           | Average | Park             | Summary          | Average           | Kyooma     | Summary           | Average           | Escott     | Summary     | Average           | Glenara     | Summary           | Average           | Kyooma      | Summary      | Average           | Limit        | Average        | Average       |
| 03-Apr-13              |                     | 1.8        | 6.2     |                    | 4.0               | 10.0    | 18               | 8.8              | 17.9              | 8          | 3.5               | 7.9               | 11         | 4.8         | 11.4              | 12          | 12.3              | 12.4              | 14          | 7.1          | 14.4              | 50           | 30             | 90            |
| 15-Apr-13              |                     | 5.9        | 0.2     |                    | 11.3              | 12.5    | 16               | 15.9             | 16.5              | 3.5<br>13  | 6.1               | 8.2               | 4.0<br>14  | 8.2         | 9.9               | 31          | 14.3              | 12.4              | 20          | 11.4         | 13.8              | 50           | 30<br>30       | 90<br>90      |
| 21-Apr-13              |                     | 12.7       |         |                    | 25.7              |         | 9                | 17.9             | 14.6              | 4          | 13.1              | 7.2               | 5          | 13.5        | 8.7               | 16          | 30.5              | 17.8              | 8           | 20.0         | 12.5              | 50           | 30             | 90            |
| 27-Apr-13              |                     |            |         |                    |                   |         | 19               |                  | 15.4              | 17         |                   | 9.1               | 16         |             | 10.2              | 27          |                   | 19.7              | 50          |              | 19.9              | 50           | 30             | 90            |
| 03-May-13              |                     | 2.3        | 64      |                    | 5.0<br>11 9       | 12.1    | 15<br>18         | 5.5<br>15 /      | 15.4              | 8<br>20    | 5.2               | 8.9<br>10.4       | 11         | 3.2         | 10.3              | 15<br>20    | 6./<br>17.6       | 19.0<br>19.1      | 18.9        | 17.4<br>35.8 | 19.8<br>27.7      | 50<br>50     | 30             | 90            |
| 15-May-13              |                     | 6.5        |         |                    | 11.4              |         | 6                | 18.3             | 14.5              | 5          | 9.6               | 9.8               | 3          | 9.9         | 9.0               | 7           | 19.1              | 17.6              | 17.4        | 18.9         | 26.4              | 50           | 30             | 90            |
| 21-May-13              |                     | 14.0       |         |                    | 26.8              |         | 19               | 19.0             | 15.0              | 10         | 19.6              | 9.8               | 10         | 16.2        | 9.1               | 19          | 27.4              | 17.7              | 18          | 75.5         | 25.4              | 50           | 30             | 90            |
| 27-May-13              |                     | 2.0        |         |                    | 4.0               |         | 17               | 12               | 15.2              | 6          | 1 1               | 9.4               | 7          | 17          | 8.9               | 11          | 12                | 17.0              | 13          | 2.2          | 24.2              | 50           | 30             | 90            |
| 02-Jun-13<br>08-Jun-13 |                     | 6.4        | 6.4     |                    | 9.0               | 11.1    | 6                | 7.7              | 13.4              | 3          | 3.4               | 8.2               | 4          | 4.0         | 7.9               | 3           | 5.6               | 14.7              | 6           | 6.4          | 20.9              | 50           | 30             | 90<br>90      |
| 14-Jun-13              |                     | 6.3        |         |                    | 8.5               |         | 1                | 6.4              | 12.5              | 3          | 3.2               | 7.8               | 2          | 3.5         | 7.4               | 1           | 3.3               | 13.7              | 3           | 4.6          | 19.6              | 50           | 30             | 90            |
| 20-Jun-13              |                     | 12.2       |         |                    | 16.7              |         | 11               | 16.5             | 12.4              | 4          | 6.2               | 7.5               | 6          | 7.2         | 7.3               | 9           | 10.8              | 13.4              | <0.1        | 13.1         | 19.6              | 50           | 30             | 90            |
| 26-Jul-13<br>02-Jul-13 |                     | 2.5        |         |                    | 3.5               |         | 9<br>12          | 5.6              | 12.2              | 3          | 2.7               | 6.9               | 4<br>6     | 4.2         | 7.1               | 2<br>5      | 1.9               | 12.7              | 4           | 3.9          | 19.6              | 50           | 30<br>30       | 90<br>90      |
| 08-Jul-13              |                     | 6.4        | 6.4     |                    | 9.3               | 10.6    | 19               | 11.9             | 12.6              | 6          | 3.8               | 6.9               | 9          | 5.7         | 7.1               | 9           | 5.5               | 12.0              | 9           | 6.7          | 17.8              | 50           | 30             | 90            |
| 14-Jul-13              |                     | 5.9        |         |                    | 9.2               |         | 14               | 12.1             | 12.6              | 5          | 3.3               | 6.7               | 6          | 5.6         | 7.0               | 9           | 4.8               | 11.8              | 8           | 6.9          | 17.2              | 50           | 30             | 90            |
| 20-Jul-13              |                     | 15.2       |         |                    | 17.7              |         | 15               | 18.0             | 12.3              | 3<br>10    | 0.0               | 6.5               | 4<br>9     | 8.0         | 7.0               | 2<br>14     | 9.3               | 11.3              | 12          | 9.2          | 16.5              | 50           | 30             | 90            |
| 01-Aug-13              |                     | 0.1        |         |                    | 1.5               |         | 10               | 9.8              | 12.3              | 6          | 6.4               | 6.7               | 7          | 6.6         | 7.0               | 10          | 7.5               | 11.3              | 8           | 8.3          | 15.9              | 50           | 30             | 90            |
| 07-Aug-13              |                     | 5.5        | 6.2     |                    | 9.9               | 10.5    | 20               | 13.5             | 12.6              | 7          | 8.6               | 6.7               | 8          | 7.5         | 7.0               | 19          | 12.6              | 11.7              | 16          | 14.1         | 15.9              | 50           | 30             | 90            |
| 13-Aug-13<br>19-Aug-13 |                     | 4.8        |         |                    | 8.3               |         | 12               | 11.5<br>19.8     | 12.6              | 9<br>11    | 8.5<br>11.0       | 6.8<br>7.0        | 7          | 7.0<br>9.4  | 7.0               | 14<br>8     | 13.5              | 11.8<br>11.6      | 12          | 12.4         | 15.7<br>16.0      | 50<br>50     | 30<br>30       | 90<br>90      |
| 25-Aug-13              |                     | 20.0       |         |                    | 00.0              |         | 10               | 10.0             | 12.4              | 7          | 1110              | 7.0               | 7          | 0.1         | 7.0               | 12          | 10.0              | 11.6              | 13          |              | 15.9              | 50           | 30             | 90            |
| 31-Aug-13              |                     | 1.0        |         |                    | 5.0               |         | 19               | 5.0              | 12.7              | 12         | 07                | 7.2               | 13         | 10          | 7.2               | 16          |                   | 11.8              | 19          |              | 16.0              | 50           | 30             | 90            |
| 06-Sep-13<br>12-Sep-13 |                     | 1.8<br>8.1 | 6.5     |                    | 5.0<br>15.3       | 11.3    | 30<br>28         | 5.2<br>21.4      | 13.3              | 18         | 3.7<br>14.0       | 7.6               | 17         | 4.6<br>14.3 | 7.6               | 39<br>30    | 25.2              | 12.8              | 27          | 6.4<br>26.5  | 16.4              | 50<br>50     | 30<br>30       | 90            |
| 18-Sep-13              |                     | 7.4        |         |                    | 14.8              |         | 5                | 23.6             | 13.6              | 4          | 11.3              | 7.5               | 5          | 14.9        | 7.8               | 8           | 22.8              | 13.2              | 6           | 20.4         | 16.3              | 50           | 30             | 90            |
| 24-Sep-13              |                     | 17.8       |         |                    | 33.7              |         | 35               | 35.2             | 14.3              | 32         | 32.4              | 8.4               | 28         | 27.6        | 8.5               | 46          | 46.3              | 14.3              | 72          | 71.7         | 18.2              | 50           | 30             | 90            |
| 30-Sep-13<br>06-Oct-13 |                     | 4.0        |         |                    | 8.8               |         | 23               | 12.8             | 14.6<br>14.5      | 12         | 77                | 8.5<br>8.4        | 12         | 6.8         | 8.6               | 56<br>22    | 22.1              | 15.7<br>15.9      | 16<br>14    | 14.3         | 18.1<br>18.0      | 50<br>50     | 30<br>30       | 90<br>90      |
| 12-Oct-13              |                     | 8.2        | 6.8     |                    | 16.6              | 12.1    | 41               | 27.2             | 15.3              | 20         | 15.9              | 8.8               | 22         | 17.0        | 9.0               | 32          | 34.9              | 16.4              | 37          | 26.7         | 18.6              | 50           | 30             | 90            |
| 18-Oct-13              |                     | 7.1        |         |                    | 14.4              |         | 38               | 22.6             | 16.0              | 31         | 11.5              | 9.4               | 36         | 12.0        | 9.8               | 42          | 31.6              | 17.1              | 46          | 21.3         | 19.5              | 50           | 30             | 90            |
| 24-Oct-13<br>30-Oct-13 |                     | 24.5       |         |                    | 43.7              |         | 22               | 41.1             | 16.1<br>16.1      | 10         | 31.2              | 9.4<br>9.4        |            | 36.2        | 9.7               | 23          | 56.4              | 17.3              | 21          | 45.6         | 19.5<br>19.5      | 50<br>50     | 30             | 90            |
| 05-Nov-13              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 11-Nov-13              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 23-Nov-13              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4<br>9.4        |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30<br>30       | 90<br>90      |
| 29-Nov-13              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 05-Dec-13              |                     |            |         |                    |                   |         |                  |                  | 16.1<br>16.1      |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3<br>17.3      |             |              | 19.5<br>19.5      | 50           | 30             | 90            |
| 17-Dec-13              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 23-Dec-13              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 29-Dec-13              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5<br>19.5      | 50<br>50     | 30             | 90            |
| 10-Jan-14              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 16-Jan-14              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 22-Jan-14              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50<br>50     | 30             | 90            |
| 03-Feb-14              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 09-Feb-14              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 15-Feb-14<br>21-Feb-14 |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5<br>19.5      | 50<br>50     | 30<br>30       | 90<br>90      |
| 27-Feb-14              | 1                   |            |         |                    |                   |         |                  |                  | 16.1              | <u> </u>   |                   | 9.4               |            |             | 9.7               | <u> </u>    |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 05-Mar-14              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 11-Mar-14              |                     |            |         |                    |                   |         |                  |                  | 16.1<br>16.1      |            |                   | 9.4<br>9.4        |            |             | 9.7               |             |                   | 17.3<br>17.3      |             |              | 19.5<br>19.5      | 50<br>50     | 30<br>30       | 90            |
| 23-Mar-14              |                     |            |         |                    |                   |         |                  |                  | 16.1              |            |                   | 9.4               |            |             | 9.7               |             |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| 29-Mar-14              |                     |            |         |                    |                   |         | I                |                  | 16.1              |            |                   | 9.4               | I .        |             | 9.7               | L           |                   | 17.3              |             |              | 19.5              | 50           | 30             | 90            |
| win<br>Median          |                     |            |         |                    |                   |         | 1.3<br>15.4      |                  |                   | 1.1<br>7.7 |                   |                   | 1.7<br>7.2 |             |                   | 1.3<br>13.5 |                   |                   | 3.2<br>14.4 |              |                   |              |                |               |
| Max                    |                     |            |         |                    |                   |         | 41.1             |                  |                   | 32.4       |                   |                   | 36.2       |             |                   | 56.4        |                   |                   | 75.5        |              |                   |              |                |               |
| Capture                |                     |            |         |                    |                   |         | 51%              |                  |                   | 51%        |                   |                   | 5/%        | ,           |                   | 51%         |                   |                   | 54%         |              |                   |              |                |               |

<u>Appendix 2 – Dust Monitoring Results – Deposited Dust</u>

|         | Deposited Dust - Werris Creek Coal Mine 2013-2014 |                   |                 |            |          |              |           |        |                   |                 |                  |                  |         |          |       |         |           |         |         |                     |
|---------|---------------------------------------------------|-------------------|-----------------|------------|----------|--------------|-----------|--------|-------------------|-----------------|------------------|------------------|---------|----------|-------|---------|-----------|---------|---------|---------------------|
|         | N<br>(a/n                                         | IONTH<br>2/month) |                 | April 2013 | May 2013 | June<br>2013 | July 2013 | August | September<br>2013 | October<br>2013 | November<br>2013 | December<br>2013 | January | February | March |         | AVERAGE - | MINIMUM | MAXIMUM | AQGHGMP<br>Criteria |
|         | (9,                                               |                   | Total<br>Matter | 4.1        | 1.5      | 1.3          | 1.2       | 0.4    | 2.2               | 0.5             | 2010             | 2010             | 2014    | 2014     | 2014  | ATERAGE | EXOLODED  |         |         | ontenu              |
| -       | DG2                                               | Cintra            | Ash<br>Content  | 3.0        | 0.8      | 0.9          | 0.8       | 0.3    | 1.2               | 0.4             |                  |                  |         |          |       | 1.6     | 1.2       | 0.4     | 4.1     | 4.0                 |
|         |                                                   |                   | Total<br>Matter | 0.7        | 1.0      | 0.9          | 0.8       | 0.5    | 1.2               | 1.0             |                  |                  |         |          |       |         |           |         |         |                     |
| -       | DG5                                               | Railway View      | Ash<br>Content  | 0.5        | 0.6      | 0.9          | 0.6       | 0.5    | 0.8               | 0.7             |                  |                  |         |          |       | 0.9     | 0.9       | 0.5     | 1.2     | 4.0                 |
|         |                                                   |                   | Total<br>Matter | 1.2        | 0.6      | 0.4          | 0.6       | 0.4    | 1.4               | 0.5             |                  |                  |         |          |       |         |           |         |         |                     |
| EPL #1  | DG20                                              | Tonsley Park      | Ash             | 0.7        | 0.3      | 0.4          | 0.4       | 0.3    | 0.6               | 0.4             |                  |                  |         |          |       | 0.7     | 0.6       | 0.4     | 1.4     | 4.0                 |
|         |                                                   |                   | Total<br>Matter | 2.6        | 1.0      | 1.2          | 0.8       | 1.1    | 0.8               | 0.7             |                  |                  |         |          |       |         |           |         |         |                     |
| -       | DG15                                              | Plain View        | Ash<br>Content  | 1.3        | 0.6      | 1.0          | 0.5       | 0.7    | 0.5               | 0.6             |                  |                  |         |          |       | 1.2     | 1.2       | 0.7     | 2.6     | 4.0                 |
|         | <b>D</b> 00                                       | Mananaa           | Total<br>Matter | 1.4        | 0.8      | 0.3          | 0.4       | 0.5    | 0.6               | 0.5             |                  |                  |         |          |       |         | 0.5       |         |         | 4.0                 |
| -       | DGa                                               | warengo           | Ash<br>Content  | 0.6        | 0.3      | 0.2          | 0.2       | 0.4    | 0.3               | 0.4             |                  |                  |         |          |       | 0.6     | 0.5       | 0.3     | 1.4     | 4.0                 |
| _       | DG22                                              | Mountain          | Total<br>Matter | 0.7        | 0.8      | 1.5          | 0.5       | 0.5    | 2.8               | 1.3             |                  |                  |         |          |       | 1.2     | 1.2       | 0.5     | 2.0     | 4.0                 |
| _       | 0022                                              | View              | Ash<br>Content  | 0.5        | 0.7      | 1.2          | 0.4       | 0.5    | 2.0               | 0.8             |                  |                  |         |          |       | 1.2     | 1.2       | 0.5     | 2.0     | 4.0                 |
| EBI #20 | DG11                                              | Glopara           | Total<br>Matter | 0.2        | 0.2      | 0.2          | 0.1       | 0.8    | 1.1               | 0.9             |                  |                  |         |          |       | 0.5     | 0.5       | 0.1     | 11      | 4.0                 |
| EF L#23 | DGII                                              | Gieriara          | Ash<br>Content  | 0.1        | 0.1      | 0.1          | 0.1       | 0.6    | 0.8               | 0.6             |                  |                  |         |          |       | 0.5     | 0.5       | 0.1     | 1.1     | 4.0                 |
| _       | DG24                                              | Hazoldono         | Total<br>Matter | 0.8        | 0.5      | 0.4          | 0.3       | 0.4    | 0.6               | 0.7             |                  |                  |         |          |       | 0.5     | 0.5       | 0.2     | 0.0     | 4.0                 |
| _       | 0024                                              | Tiazeidene        | Ash<br>Content  | 0.4        | 0.4      | 0.4          | 0.2       | 0.3    | 0.6               | 0.6             |                  |                  |         |          |       | 0.5     | 0.5       | 0.5     | 0.0     | 4.0                 |
| _       | DG17                                              | Woodlands         | Total<br>Matter | 0.8        | 0.7      | 0.4          | 0.4       | 0.5    | 0.5               | 1.3             |                  |                  |         |          |       | 0.7     | 0.7       | 0.4     | 13      | 4.0                 |
|         | 2017                                              | Woodiands         | Ash<br>Content  | 0.5        | 0.4      | 0.4          | 0.3       | 0.5    | 0.5               | 1.1             |                  |                  |         |          |       | 0.7     | 0.7       | 0.4     | 1.5     | 4.0                 |
| -       | DG96                                              | Talavera          | Total<br>Matter | 0.7        | 0.4      | 0.2          | 0.2       | 0.4    | 0.6               | 0.5             |                  |                  |         |          |       | 04      | 0.4       | 0.2     | 0.7     | 4.0                 |
|         | 2000                                              | Tuluveru          | Ash<br>Content  | 0.4        | 0.2      | 0.2          | 0.2       | 0.2    | 0.3               | 0.4             |                  |                  |         |          |       | 0.4     | 0.4       | 0.2     | 0       | 4.0                 |
| EPL#28  | DG98                                              | Kvooma            | Total<br>Matter | 0.2        | 0.2      | 0.1          | 0.2       | 0.2    | 0.3               | 0.4             |                  |                  |         |          |       | 0.2     | 0.2       | 0.1     | 0.4     | 4.0                 |
| _       |                                                   |                   | Ash<br>Content  | 0.2        | 0.2      | 0.1          | 0.2       | 0.2    | 0.3               | 0.4             |                  |                  |         |          |       |         | -         | -       |         |                     |
| -       | DG14                                              | Greenslopes       | Total<br>Matter | 0.4        | 0.3      | 0.3          | 0.3       | 0.3    | 0.6               | 0.3             |                  |                  |         |          |       | 0.4     | 0.4       | 0.3     | 0.6     | 4.0                 |
|         |                                                   |                   | Ash<br>Content  | 0.3        | 0.2      | 0.3          | 0.2       | 0.3    | 0.3               | 0.3             |                  |                  |         |          |       |         |           |         |         |                     |
| -       | DG62                                              | Werris Creek      | Total<br>Matter | 0.3        | 0.3      | 0.2          | 0.9       | 0.2    | 0.3               | 0.3             |                  |                  |         |          |       | 0.4     | 0.3       | 0.2     | 0.9     | 4.0                 |
|         |                                                   | South             | Ash<br>Content  | 0.2        | 0.2      | 0.2          | 0.2       | 0.2    | 0.2               | 0.3             |                  |                  |         |          |       |         |           |         |         |                     |
| EPL#30  | DG92                                              | Werris Creek      | Total<br>Matter | 0.5        | 0.8      | 0.3          | 0.3       | 0.1    | 0.3               | 0.2             |                  |                  |         |          |       | 0.4     | 0.4       | 0.1     | 0.8     | 4.0                 |
|         |                                                   | Centre            | Ash<br>Content  | 0.3        | 0.6      | 0.2          | 0.2       | 0.1    | 0.2               | 0.2             |                  |                  |         |          |       |         |           |         |         |                     |
| -       | DG101                                             | Westfall          | Matter          | 1.2        | 0.5      | 0.4          | 0.5       | 0.4    | 0.6               | 0.7             |                  |                  |         |          |       | 0.6     | 0.6       | 0.4     | 1.2     | 4.0                 |
|         | Ļ                                                 | ļ'                | Asn<br>Content  | 0.8        | 0.5      | 0.2          | 0.3       | 0.2    | 0.5               | 0.4             |                  |                  |         |          |       |         |           |         |         |                     |
| -       | DG103                                             | West Street       | Matter          | 0.8        | 0.5      | 0.3          | 0.7       | 0.5    | 0.6               | 0.5             |                  |                  |         |          |       | 0.6     | 0.6       | 0.3     | 0.8     | 4.0                 |
|         | Ļ                                                 | ļ'                | Asn<br>Content  | 0.6        | 0.5      | 0.2          | 0.4       | 0.3    | 0.5               | 0.5             |                  |                  |         |          |       |         |           |         |         |                     |
| -       | DG1                                               | Escott            | Matter          | 2.4        | 0.2      | 1.6          | 0.7       | 0.2    | 0.5               | 5.0             |                  |                  |         |          |       | 1.5     | 0.7       | 0.2     | 5.0     | 4.0                 |
| L       | └───                                              | <b> </b> '        | Asn<br>Content  | 1.0        | 0.2      | 0.6          | 0.5       | 0.1    | 0.2               | 1.4             |                  |                  |         |          |       |         |           |         |         |                     |
|         | DG3                                               | Eurunderee        | Matter          | 1.1        | 0.6      | 0.7          | 0.4       | 0.6    | 1.6               | 0.2             |                  |                  |         |          |       | 0.7     | 0.7       | 0.2     | 1.6     | 4.0                 |
| L       | └───                                              | <b> </b> '        | Asn<br>Content  | 0.8        | 0.5      | 0.4          | 0.2       | 0.4    | 1.4               | 0.2             |                  |                  |         |          |       |         |           |         |         |                     |
|         | DG34                                              | 8 Kurrara         | Matter          | 13.7       | 6.2      | 54.1         | 0.4       | 0.2    | 0.6               | 0.3             |                  |                  |         |          |       | 10.8    | 0.4       | 0.2     | 54.1    | 4.0                 |
| L       | └───                                              | Sileei            | Content         | 9.8        | 4.6      | 43.6         | 0.2       | 0.2    | 0.3               | 0.3             |                  |                  |         |          |       |         |           |         |         |                     |
|         | DG106                                             | Villamagna        | Matter          | 0.8        | 0.4      | 0.4          | 0.3       | 0.4    | 0.4               | 3.0             |                  |                  |         |          |       | 0.8     | 0.5       | 0.3     | 3.0     | 4.0                 |
|         |                                                   | _                 | Content         | 0.5        | 0.3      | 0.2          | 0.1       | 0.3    | 0.3               | 1.3             |                  |                  |         |          |       |         |           |         |         |                     |

Note: All results are in the form of Insoluble Matter (g/m2/month); NS - Not sampled BROWN - indicates sample is contaminated from a Non-Werris Creek Coal dust source YELLOW - sample contaminated with excessive organic matter (>50%) from non-mining source (i.e bird droppings and insects)

# Appendix 3 – Train Dust Deposition Monitoring

|                   |              |        |                             |        |              | De         | oosi                        | ited   | Dus          | st - ( | Quir                        | indi   | Tra          | ins    | 201:                        | 3-20   | 14           |        |                             |        |              |        |                             |        |        |
|-------------------|--------------|--------|-----------------------------|--------|--------------|------------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------------|--------|-----------------------------|--------|--------|
|                   |              | DD     | W30                         |        |              | DD         | N20                         |        |              | DD     | W13                         |        |              | DD     | E13                         |        |              | DD     | E20                         |        |              | DD     | E30                         |        | ine    |
|                   | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal     | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Total Matter | % Coal | %<br>Vegetation/<br>Insects | % Dirt | Guidel |
| April 2013        | 0.8          | 15%    | 45%                         | 40%    | 0.5          | 15%        | 50%                         | 35%    | -            | -      | -                           | -      | 1.0          | 15%    | 45%                         | 15%    | 0.9          | 15%    | 60%                         | 25%    | 0.7          | 5%     | 55%                         | 40%    | 4.0    |
| May 2013          | 1.4          | <1%    | 50%                         | 30%    | 0.7          | <1%        | 90%                         | 10%    | 0.5          | 10%    | 85%                         | 5%     | 0.6          | <1%    | 70%                         | 20%    | 0.9          | <1%    | 30%                         | 60%    | 0.5          | <1%    | 90%                         | 10%    | 4.0    |
| June 2013         | 1.0          | 30%    | 30%                         | 35%    | 0.5          | 40%        | 35%                         | 20%    | -            | -      | -                           | -      | -            | -      | -                           | -      | 0.4          | 30%    | 40%                         | 20%    | 0.8          | 15%    | 50%                         | 15%    | 4.0    |
| July 2013         | 1.0          | 30%    | 40%                         | 20%    | 1.2          | 25%        | 40%                         | 10%    | 0.9          | 30%    | 20%                         | 10%    | 0.8          | 20%    | 40%                         | 20%    | 1.7          | 20%    | 30%                         | 40%    | 1.6          | 10%    | 25%                         | 30%    | 4.0    |
| August 2013       | 0.8          | 5%     | 30%                         | 60%    | 0.5          | 10%        | 30%                         | 50%    | 0.5          | 35%    | 20%                         | 45%    | 0.7          | 30%    | 40%                         | 25%    | 0.6          | 30%    | 40%                         | 20%    | 0.9          | 5%     | 30%                         | 35%    | 4.0    |
| September 2013    | 1.2          | -      | -                           | -      | 1.1          | -          | -                           | -      | 1.7          | -      | -                           | -      | 1.8          | -      | -                           | -      | 1.2          | -      | -                           | -      | 1.0          | -      | -                           | -      | 4.0    |
| October 2013      | -            | -      | -                           | -      | 1.9          | 20%        | 40%                         | 30%    | 1.4          | 40%    | 20%                         | 40%    | 2.9          | 70%    | 10%                         | 20%    | 2.4          | 60%    | 20%                         | 20%    | 3.1          | 20%    | 20%                         | 30%    | 4.0    |
| November 2013     |              |        |                             |        |              |            |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| December 2013     |              |        |                             |        |              |            |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| January 2014      |              |        |                             |        |              |            |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| February 2014     |              |        |                             |        |              |            |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| March 2014        |              |        |                             |        |              |            |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        |              |        |                             |        | 4.0    |
| ANNUAL AVERAGE    |              | 1      | .0                          |        |              | 0          | .9                          |        |              | 1      | .0                          |        |              | 1      | .3                          |        | 1.2          |        |                             |        | 1            | .2     |                             | 4.0    |        |
| Average Coal %    |              | 20     | 20.0% 22.0%                 |        |              |            |                             | 28     | .8%          |        |                             | 33     | .8%          |        |                             | 31.    | .0%          |        |                             | 11.    | .0%          |        | -                           |        |        |
| Average Coal g/m2 |              | 0.     | 21                          |        | 0.20         |            |                             | 0.29   |              |        |                             | 0.     | .44          |        | 0.36                        |        |              | 0.14   |                             |        | -            |        |                             |        |        |
| MINIMUM           |              | 0      | .8                          |        |              | 0.5        |                             |        | 0.5 0.6      |        |                             | 0.4    |              |        |                             | 0.5    |              |        |                             | -      |              |        |                             |        |        |
| MAXIMUM           |              | 1      | .4                          |        |              | 0.5<br>1.9 |                             |        |              | 1      | .7                          |        |              | 2      | .9                          |        |              | 2      | .4                          |        | 3.1          |        |                             |        | 4.0    |

Note: All results are in the form of Insoluble Matter (g/m2/month)

# Appendix 4 – Noise Monitoring Results



12 August 2013

Ref: 04035/4818

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

#### RE: AUGUST 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Thursday 8<sup>th</sup> August, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

#### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

|                  |                         |      | Table 1                        |                                        |  |  |  |  |  |
|------------------|-------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|--|
|                  |                         | WCC  | Attended Noise Monitoring      | g Program                              |  |  |  |  |  |
| Monitoring Point | Duration                | ID   | Receiver                       | Relevant Monitoring Requirements       |  |  |  |  |  |
| A                | 15 minutes <sup>1</sup> | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| B1               | $60 \text{ minutes}^2$  | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |  |
|                  | 00 111110165            | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |  |
| B2               | $60 \text{ minutes}^2$  | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |  |
| DZ               | 00 minutes              | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |  |
| C                | 15 minutos <sup>1</sup> | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |  |
| C                |                         | R11* | Glenara                        |                                        |  |  |  |  |  |
| D                | 60 minutes <sup>2</sup> | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |  |
| E                | 60 minutes <sup>2</sup> | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |  |
| F                | 60 minutes <sup>2</sup> | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |  |
| G                | 15 minutes <sup>1</sup> | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| Н                | 15 minutes <sup>1</sup> | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |  |
| I                | 60 minutes <sup>2</sup> | R57  | Kurrara Street <sup>®</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |  |
| J                | 15 minutes <sup>1</sup> |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| К                | 15 minutes <sup>1</sup> | R21* | Alco Park                      | Private Agreement                      |  |  |  |  |  |
| L                | 15 minutes <sup>1</sup> | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

#### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.



#### **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather station M2 which is located on top of the overburden emplacement.

#### WCC Operations

WCC operations on Thursday 8<sup>th</sup> August 2013 had the 5600 excavator in Strip 13 centre at RL370m, 3600 excavator in Strip 15 west at RL390m; a 1900 excavator in Strip 15 centre at RL390m and a 1900 excavator in Strip 13 west at RL370m. Day and night shift initially had the overburden truck fleets running to the RL390m western (out of pit) dump and truck fleets coaling from Strip 15 were hauling coal to the ROM. After 7:30pm, the Noise Control Operator contacted the Open Cut Examiner (OCE) indicating that the 5 minute noise levels were approaching 35dBA due to mining noise with the OCE responding by directing all trucks to the in pit dump at RL300m. At 9pm, the entire operation was suspended due to noise levels approaching 35dBA. The crushing plant operated to 11:30pm with no trains loaded.

#### Noise Compliance Assessment

The results of the noise measurements are shown below in **Tables 2** and **3**.



| Table 2                                            |         |        |           |                     |                        |                                                         |  |  |  |
|----------------------------------------------------|---------|--------|-----------|---------------------|------------------------|---------------------------------------------------------|--|--|--|
| WCC Noise Monitoring Results – 8 August 2013 (Day) |         |        |           |                     |                        |                                                         |  |  |  |
|                                                    |         | dB(A), | Criterion | Inversion           | Wind                   |                                                         |  |  |  |
| Location                                           | Time    | Leq    | dB(A) Leq | <sup>o</sup> C/100m | speed                  | Identified Noise Sources                                |  |  |  |
|                                                    |         |        |           |                     | (m/s)/dir <sup>o</sup> |                                                         |  |  |  |
| A R5 Rosehill                                      | 2:43 pm | 43     | 35        | n/a                 | 5.9/262                | Traffic (40), birds (38), wind (36), WCC inaudible      |  |  |  |
| B1 R7 83 Wadwells                                  | 1:30 pm | 43     | 37        | n/a                 | 5.6/276                | Birds & insects (41), wind in trees (40), traffic (30), |  |  |  |
| Lane/R8 Almawillee                                 |         |        |           |                     |                        | WCC inaudible                                           |  |  |  |
| B2 R9Gedhurst/ R22                                 | 1:38 pm | 47     | 37/36*    | n/a                 | 5.5/275                | Wind in trees (46), birds (43), WCC inaudible           |  |  |  |
| Mountain View                                      |         |        |           |                     |                        |                                                         |  |  |  |
| C R10 Meadholme/                                   | 3:05 pm | 48     | 39        | n/a                 | 4.9/269                | Wind in trees (46), birds & insects (44), traffic (30), |  |  |  |
| R11 Glenara                                        |         |        |           |                     |                        | WCC inaudible                                           |  |  |  |
| D R24 Hazeldene                                    | 3:23 pm | 46     | 37        | n/a                 | 4.2/275                | Traffic (43), birds & insects (43), WCC inaudible       |  |  |  |
| E R12 Railway Cottage                              | 5:06 pm | 47     | 38        | n/a                 | 3.3/290                | Traffic (47), birds & insects (30), WCC inaudible       |  |  |  |
| F R96 Talavera                                     | 2:48 pm | 37     | 38        | n/a                 | 5.1/267                | Traffic (35), birds (32), WCC (25)                      |  |  |  |
| <b>G</b> R97                                       | 4:10 pm | 39     | 35        | n/a                 | 4.0/274                | Birds (34), traffic (33), wind (32), WCC (32)           |  |  |  |
| H R98 Kyooma                                       | 3:52 pm | 40     | 36        | n/a                 | 3.8/282                | Wind (37), birds & insects (35), traffic (30), WCC      |  |  |  |
|                                                    |         |        |           |                     |                        | (26)                                                    |  |  |  |
| I R57 Kurrara St                                   | 4:48 pm | 51     | 35        | n/a                 | 3.7/288                | Traffic (51), birds (35), WCC inaudible                 |  |  |  |
| J R57 Coronation Ave                               | 4:29 pm | 54     | 35        | n/a                 | 3.8/262                | Traffic (54), birds (37), wind in trees (35), WCC       |  |  |  |
|                                                    |         |        |           |                     |                        | inaudible                                               |  |  |  |
| K R21 Alco Park                                    | 4:46 pm | 40     | 39        | n/a                 | 4.5/281                | Traffic (40), birds (32), train (31), WCC inaudible     |  |  |  |
| L R103                                             | 4:29 pm | 40     | 35        | n/a                 | 3.8/262                | Birds (36), train (36), traffic (33), WCC inaudible     |  |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

| Table 3                                                      |          |                     |        |           |                                |                                                        |  |  |  |
|--------------------------------------------------------------|----------|---------------------|--------|-----------|--------------------------------|--------------------------------------------------------|--|--|--|
| WCC Noise Monitoring Results – 8 August 2013 (Evening/Night) |          |                     |        |           |                                |                                                        |  |  |  |
|                                                              |          | dB(A),              | dB(A), | Criterion | Inversion <sup>o</sup> C/100m, |                                                        |  |  |  |
| Location                                                     | Time     | L1                  | Leq    | dB(A) Leq | Wind speed                     | Identified Noise Sources                               |  |  |  |
|                                                              |          | (1min) <sup>1</sup> |        |           | (m/s),dir <sup>o</sup>         |                                                        |  |  |  |
| A R5 Rosehill                                                | 9:15 pm  | n/a                 | 33     | 35        | +1.3,2.1,8                     | Traffic (32), frogs (25), WCC inaudible                |  |  |  |
| B1 R7 83 Wadwells                                            | 10:42 pm | n/a                 | 32     | 37        | Lapse,4.8,4                    | Traffic (30), cattle (25), insects (23), WCC inaudible |  |  |  |
| Lane/R8 Almawillee                                           |          |                     |        |           |                                |                                                        |  |  |  |
| B2 R9Gedhurst/ R22                                           | 8:12 pm  | n/a                 | 33     | 37/36*    | +0.6,2,344                     | Traffic (33), insect (25), WCC inaudible               |  |  |  |
| Mountain View                                                |          |                     |        |           |                                |                                                        |  |  |  |
| C R10 Meadholme/                                             | 9:36 pm  | n/a                 | 41     | 39        | +1.9,2.1,359                   | Dog (40), traffic (35), WCC inaudible                  |  |  |  |
| R11 Glenara                                                  |          |                     |        |           |                                |                                                        |  |  |  |
| D R24 Hazeldene                                              | 9:53 pm  | n/a                 | 39     | 37        | +2.4,4.0,4                     | Traffic (39), WCC inaudible                            |  |  |  |
| E R12 Railway                                                | 10:56 pm | n/a                 | 44     | 38        | Lapse,4.6,3                    | Traffic (44), WCC inaudible                            |  |  |  |
| Cottage                                                      |          |                     |        |           |                                |                                                        |  |  |  |
| F R96 Talavera                                               | 7:28 pm  | 38                  | 35     | 37        | Lapse, 2.9, 320                | Traffic (32), WCC (32)                                 |  |  |  |
| <b>G</b> R97                                                 | 8:50 pm  | 30                  | 32     | 35        | +0.8,2.0,2                     | Traffic (31), WCC (25)                                 |  |  |  |
| H R98 Kyooma                                                 | 8:32 pm  | 39                  | 34     | 36        | Lapse,2.1,322                  | WCC (32), traffic (28), insects (24)                   |  |  |  |
| I R57 Kurrara St                                             | 9:28 pm  | n/a                 | 38     | 35        | +1.7,2.8,359                   | Trains (36), traffic (34), WCC inaudible               |  |  |  |
| J R57 Coronation Ave                                         | 9:10 pm  | n/a                 | 34     | 35        | +1.3,1.9,11                    | Traffic (34), trains (31), WCC inaudible               |  |  |  |
| K R21 Alco Park                                              | 7:48 pm  | 42                  | 36     | 37        | Lapse, 3.3, 320                | WCC (34), traffic (32)                                 |  |  |  |
| L R103                                                       | 7:29 pm  | 42                  | 41     | 35        | Lapse, 3.3, 312                | Train (40), WCC (34)                                   |  |  |  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.



The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels did not exceed the relevant noise criterion at any monitoring location at any time during the monitoring.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the (1 min) noise from WCC did not exceed 45 dB(A) at any monitoring location.

#### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.



We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Ponte

Neil Pennington Acoustical Consultant

Review:

ban Hay

Ross Hodge Acoustical Consultant



USTICS

#### Appendix I



Attended Noise Monitoring Locations





## Appendix II

Noise Limits

| Location                       |                               | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|--------------------------------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|                                |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7                             | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9                             | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12                            | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22                            | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24                            | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96                            | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All other privately-owned land |                               | 35                         | 35                         | 45                    | 35                          | 40                         |

#### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

| Location |                | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |  |  |
|----------|----------------|-----------------------------------|-----------------------------------------|--|--|
| R8       | "Almawillee"   | 40                                | 45                                      |  |  |
| R10      | "Meadholme"    | 40                                | 45                                      |  |  |
| R11      | "Glenara"      | 40                                | 45                                      |  |  |
| R20      | "Tonsley Park" | 40                                | 45                                      |  |  |
| R21      | "Alco Park"    | 40                                | 45                                      |  |  |
| R98      | "Kyooma"       | 40                                | 45                                      |  |  |

#### Table 21: Properties with Private Agreements Noise Criteria



# Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       |                           | SWLs                      | dP(A) Log  | dB(A)      | Data Maggurad |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|
| Туре                                                                        | No.   | Leq                       | Lmax                      | aB(A) Leq  | Lmax       | Date Measured |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 115        | 118        | 8/8/13        |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 613   | 108                       | 116                       | 122        |            | 8/8/13        |
| Haul truck CAT 785C<br>(unattenuated)                                       | 624   | 108                       | 116                       | 121        |            | 8/8/13        |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |
| Excavator (PC4000)                                                          | EX837 | 116                       | n/a                       | 115        |            | 18/12/12      |
| Dozer D10T<br>(1 <sup>st</sup> gear)                                        | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  | 501   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |
| Excavator (EX 5600)                                                         | 570   | 121                       | n/a                       | 116        | 119        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 660   | 115                       | n/a                       | 116        | 119        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 661   | 115                       | n/a                       | 116        | 118        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 662   | 115                       | n/a                       | 115        | 118        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 663   | 115                       | n/a                       | 116        | 119        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 664   | 115                       | n/a                       | 114        | 117        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 665   | 115                       | n/a                       | 115        | 117        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 666   | 115                       | n/a                       | 115        | 117        | 8/8/13        |



| Haul truck CAT 793XQ | 667    | 115 | n/a | 116 | 119 | 8/8/13 |
|----------------------|--------|-----|-----|-----|-----|--------|
| Hitachi Excavator    | 543    | 116 | n/a | 115 | 119 | 8/8/13 |
| Grader               | 849    | n/a | n/a | 110 | 112 | 8/8/13 |
| Warrior 2400 crusher | n/a    | n/a | n/a | 117 | 117 | 8/8/13 |
| Kleeman screen       | MCR401 | n/a | n/a | 111 | 112 | 8/8/13 |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.





27 September 2013

Ref: 04035/4912

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

#### RE: SEPTEMBER 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Thursday 19<sup>th</sup> September, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

#### Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

| Table 1                               |                         |      |                                |                                        |  |  |  |  |  |
|---------------------------------------|-------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|--|
| WCC Attended Noise Monitoring Program |                         |      |                                |                                        |  |  |  |  |  |
| Monitoring Point                      | Duration                | ID   | Receiver                       | Relevant Monitoring Requirements       |  |  |  |  |  |
| A                                     | 15 minutes <sup>1</sup> | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| B1                                    | $60 \text{ minutes}^2$  | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |  |
| ы                                     | 00 minutes              | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |  |
| B2                                    | $60 \text{ minutes}^2$  | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |  |
| DZ                                    | 00 111110165            | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |  |
| C                                     | 15 minutes <sup>1</sup> | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |  |
| C                                     |                         | R11* | Glenara                        | Filvale Agreement                      |  |  |  |  |  |
| D                                     | 60 minutes <sup>2</sup> | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |  |
| E                                     | 60 minutes <sup>2</sup> | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |  |
| F                                     | 60 minutes <sup>2</sup> | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |  |
| G                                     | 15 minutes <sup>1</sup> | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| Н                                     | 15 minutes <sup>1</sup> | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |  |
| I                                     | 60 minutes <sup>2</sup> | R57  | Kurrara Street <sup>@</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |  |
| J                                     | 15 minutes <sup>1</sup> |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |  |
| К                                     | 15 minutes <sup>1</sup> | R21* | Alco Park                      | Private Agreement                      |  |  |  |  |  |
| L                                     | 15 minutes <sup>1</sup> | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

#### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.


### **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather station M2 which is located on top of the overburden emplacement.

### WCC Operations

WCC operations on Thursday 19<sup>th</sup> September 2013 had the 5600 excavator in Strip 16 centre at RL395m, 3600 excavator in Strip 13 centre at RL330m; a 1900 excavator in Strip 15 west at RL385m and a 1900 excavator in Strip 13 east at RL340m. Day and night shift initially had the overburden truck fleets running to either the RL390m western (out of pit) dump or RL370m inpit dump and truck fleets coaling from Strip 13 were hauling coal to the ROM. At 8:30pm, all trucks were directed to the inpit dump. Between 9pm and 10pm, various trucks were shutdown and restarted to manage noise levels below 35dBA at Quipolly and Werris Creek. The crushing plant operated to 3:30am with one train loaded arriving at 2:02pm and departing 4:12pm.

### Noise Compliance Assessment

The results of the noise measurements are shown below in **Tables 2** and **3**.



| Table 2                                        |         |               |                        |                                  |                                         |                                                                                |  |  |  |
|------------------------------------------------|---------|---------------|------------------------|----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|--|--|--|
|                                                |         | W             | CC Noise Moni          | toring Results -                 | - 19 September                          | r 2013 (Day)                                                                   |  |  |  |
| Location                                       | Time    | dB(A),<br>Leq | Criterion<br>dB(A) Leq | Inversion<br><sup>o</sup> C/100m | Wind<br>speed<br>(m/s)/dir <sup>o</sup> | Identified Noise Sources                                                       |  |  |  |
| A R5 Rosehill                                  | 2:35 pm | 51            | 35                     | n/a                              | 5.6/299                                 | Birds & insects (51), cattle (40), WCC inaudible                               |  |  |  |
| <b>B1</b> R7 83 Wadwells<br>Lane/R8 Almawillee | 1:30 pm | 46            | 37                     | n/a                              | 6.2/299                                 | Birds & insects (44), wind in trees (41), WCC inaudible                        |  |  |  |
| B2 R9Gedhurst/ R22<br>Mountain View            | 1:30 pm | 48            | 37/36*                 | n/a                              | 6.2/298                                 | Birds & insects (48), wind in trees (38), WCC inaudible                        |  |  |  |
| C R10 Meadholme/<br>R11 Glenara                | 2:26 pm | 46            | 39                     | n/a                              | 3.8/291                                 | Wind in trees (46), birds & insects (36), WCC barely audible                   |  |  |  |
| D R24 Hazeldene                                | 3:14 pm | 44            | 37                     | n/a                              | 4.7/292                                 | Wind (43), birds & insects (37), WCC barely audible                            |  |  |  |
| E R12 Railway Cottage                          | 2:34 pm | 52            | 38                     | n/a                              | 4.7/294                                 | Traffic (52), birds & insects (43), WCC inaudible                              |  |  |  |
| F R96 Talavera                                 | 3:40 pm | 38            | 38                     | n/a                              | 5.5/294                                 | Birds & insects (34), wind (34), cattle (28), traffic (28), WCC barely audible |  |  |  |
| G R97                                          | 5:07 pm | 38            | 35                     | n/a                              | 4.8/270                                 | Sheep (34), birds & insects (33), wind (30), WCC barely audible                |  |  |  |
| H R98 Kyooma                                   | 4:46 pm | 43            | 36                     | n/a                              | 5.2/268                                 | Wind (43), birds & insects (30), WCC (27)                                      |  |  |  |
| I R57 Kurrara St                               | 5:00 pm | 50            | 35                     | n/a                              | 4.7/273                                 | Traffic (46), trains (44), birds & insects (41), WCC inaudible                 |  |  |  |
| J R57 Coronation Ave                           | 5:31 pm | 43            | 35                     | n/a                              | 4.5/274                                 | Traffic (41), birds & insects (35), dogs (34), WCC inaudible                   |  |  |  |
| K R21 Alco Park                                | 4:21 pm | 44            | 39                     | n/a                              | 6.2/295                                 | Train (42), birds & insects (41), wind (33), WCC inaudible                     |  |  |  |
| L R103                                         | 4:40 pm | 47            | 35                     | n/a                              | 5.2/268                                 | Train (45), wind (40), birds & insects (39), WCC inaudible                     |  |  |  |

Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

| -                     |                                                                  |                     |     |           |                        |                                                   |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------|---------------------|-----|-----------|------------------------|---------------------------------------------------|--|--|--|--|--|
| Table 3               |                                                                  |                     |     |           |                        |                                                   |  |  |  |  |  |
|                       | WCC Noise Monitoring Results – 19 September 2013 (Evening/Night) |                     |     |           |                        |                                                   |  |  |  |  |  |
|                       |                                                                  |                     |     |           |                        |                                                   |  |  |  |  |  |
| Location              | Time                                                             | L1                  | Leq | dB(A) Leq | Wind speed             | Identified Noise Sources                          |  |  |  |  |  |
|                       |                                                                  | (1min) <sup>1</sup> |     |           | (m/s),dir <sup>o</sup> |                                                   |  |  |  |  |  |
| A R5 Rosehill         | 8:07 pm                                                          | n/a                 | 38  | 35        | +0.1,5.0.272           | Traffic (36), birds & insects (34), WCC inaudible |  |  |  |  |  |
| B1 R7 83 Wadwells     | 8:26 pm                                                          | n/a                 | 34  | 37        | +0.8,3.6,267           | Traffic (33), birds & insects (28), WCC inaudible |  |  |  |  |  |
| Lane/R8 Almawillee    |                                                                  |                     |     |           |                        |                                                   |  |  |  |  |  |
| B2 R9Gedhurst/ R22    | 8:15 pm                                                          | n/a                 | 37  | 37/36*    | +0.3,4.9,271           | Traffic (36), birds & insects (31), WCC inaudible |  |  |  |  |  |
| Mountain View         |                                                                  |                     |     |           |                        |                                                   |  |  |  |  |  |
| C R10 Meadholme/ R11  | 9:30 pm                                                          | n/a                 | 32  | 39        | +1.9,2.8,263           | Traffic (32), WCC inaudible                       |  |  |  |  |  |
| Glenara               |                                                                  |                     |     |           |                        |                                                   |  |  |  |  |  |
| D R24 Hazeldene       | 9:48 pm                                                          | n/a                 | 33  | 37        | +1.6,3.2,263           | Traffic (33), birds & insects (21), WCC inaudible |  |  |  |  |  |
| E R12 Railway Cottage | 12:35 am                                                         | n/a                 | 37  | 38        | +7.3,0.6,294           | Traffic (37), WCC inaudible                       |  |  |  |  |  |
| F R96 Talavera        | 9:30 pm                                                          | 43                  | 38  | 37        | +1.5,3.3,267           | WCC (36), traffic (34), birds & insects (20)      |  |  |  |  |  |
| <b>G</b> R97          | 11:11 pm                                                         | 46                  | 40  | 35        | +3.7,0.2,280           | WCC (39), sheep (33)                              |  |  |  |  |  |
| H R98 Kyooma          | 10:49 pm                                                         | 48                  | 42  | 36        | +3.0,0.8,144           | WCC (42), birds & insects (25), sheep (20)        |  |  |  |  |  |
| I R57 Kurrara St      | 11:11 pm                                                         | 42                  | 38  | 35        | +4.2,0.5,348           | Traffic (36), WCC (34)                            |  |  |  |  |  |
| J R57 Coronation Ave  | 11:33 pm                                                         | 41                  | 40  | 35        | +4.4,0.5,265           | Traffic (38), WCC (34), dogs (30)                 |  |  |  |  |  |
| K R21 Alco Park       | 10:55 pm                                                         | n/a                 | 40  | 37        | +2.3,0.3,255           | Traffic (40), dogs (30), WCC barely audible       |  |  |  |  |  |
| L R103                | 12:02 am                                                         | 38                  | 35  | 35        | +4.5,0.6,48            | Traffic (33), WCC (31)                            |  |  |  |  |  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.



The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels exceeded the relevant noise criterion at R97 and Kyooma during the evening/night time monitoring period.

There is no residence at R97. The monitoring is undertaken at the gate to the property off Black Gully Road. The mine has a private agreement with the resident at Kyooma.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the L1 (1 min) noise from WCC exceeded 45 dB(A) at the R97 and Kyooma monitoring locations. There is no residence at R97 and, therefore, the sleep disturbance criterion is not applicable. The mine has a private agreement with the resident at Kyooma.

### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.





For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.

We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

ass

Ross Hodge Acoustical Consultant

Review:

Neil Port

Neil Pennington Acoustical Consultant



USTICS

## Appendix I



Attended Noise Monitoring Locations





## Appendix II

Noise Limits

| Location |                               | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|----------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|          |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7       | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9       | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12      | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22      | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24      | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96      | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c    | other privately-owned land    | 35                         | 35                         | 45                    | 35                          | 40                         |

### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |
|-----|----------------|-----------------------------------|-----------------------------------------|
| R8  | "Almawillee"   | 40                                | 45                                      |
| R10 | "Meadholme"    | 40                                | 45                                      |
| R11 | "Glenara"      | 40                                | 45                                      |
| R20 | "Tonsley Park" | 40                                | 45                                      |
| R21 | "Alco Park"    | 40                                | 45                                      |
| R98 | "Kyooma"       | 40                                | 45                                      |

### Table 21: Properties with Private Agreements Noise Criteria



## Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       | EA S                      | SWLs                      | dP(A) Log  | dB(A)      | Date Measured |  |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|--|
| Туре                                                                        | No.   | Leq                       | Lmax                      | dB(A) Leq  | Lmax       | Date measured |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |  |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 115        | 118        | 8/8/13        |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 613   | 108                       | 116                       | 122        |            | 8/8/13        |  |
| Haul truck CAT 785C<br>(unattenuated)                                       | 624   | 108                       | 116                       | 121        |            | 8/8/13        |  |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |  |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |  |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |  |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |  |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |  |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |  |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |  |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |  |
| Excavator (PC4000)                                                          | EX837 | 116                       | n/a                       | 115        |            | 18/12/12      |  |
| Dozer D10T<br>(1 <sup>st</sup> gear)                                        | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |  |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |  |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  | 501   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |  |
| Excavator (EX 5600)                                                         | 570   | 121                       | n/a                       | 116        | 119        | 8/8/13        |  |
| Haul truck CAT 793XQ                                                        | 660   | 115                       | n/a                       | 116        | 119        | 8/8/13        |  |
| Haul truck CAT 793XQ                                                        | 661   | 115                       | n/a                       | 116        | 118        | 8/8/13        |  |
| Haul truck CAT 793XQ                                                        | 662   | 115                       | n/a                       | 115        | 118        | 8/8/13        |  |
| Haul truck CAT 793XQ                                                        | 663   | 115                       | n/a                       | 116        | 119        | 8/8/13        |  |
| Haul truck CAT 793XQ                                                        | 664   | 115                       | n/a                       | 114        | 117        | 8/8/13        |  |
| Haul truck CAT 793XQ                                                        | 665   | 115                       | n/a                       | 115        | 117        | 8/8/13        |  |
| Haul truck CAT 793XQ                                                        | 666   | 115                       | n/a                       | 115        | 117        | 8/8/13        |  |



| Haul truck CAT 793XQ | 667    | 115 | n/a | 116 | 119 | 8/8/13 |
|----------------------|--------|-----|-----|-----|-----|--------|
| Hitachi Excavator    | 543    | 116 | n/a | 115 | 119 | 8/8/13 |
| Grader               | 849    | n/a | n/a | 110 | 112 | 8/8/13 |
| Warrior 2400 crusher | n/a    | n/a | n/a | 117 | 117 | 8/8/13 |
| Kleeman screen       | MCR401 | n/a | n/a | 111 | 112 | 8/8/13 |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.





24 October 2013

Ref: 04035/4956

Werris Creek Coal 1435 Werris Creek – Quirindi Road Werris Creek NSW 2341

### RE: OCTOBER 2013 NOISE MONITORING RESULTS - WERRIS CREEK MINE

This letter report presents the results of noise compliance monitoring conducted for the Werris Creek Coal Mine (WCC) on Tuesday 22<sup>nd</sup> and Wednesday 23<sup>rd</sup> October, 2013 as required by the draft Noise Management Plan (NMP), Project Approval 10\_0059 and the Environmental Protection Licence (EPL) 12290 and must be submitted to the Environment Protection Authority within 30 days of the completion of monitoring.

### Attended Noise Monitoring Programme

Noise monitoring was undertaken in accordance with the WCC Noise Monitoring Programme as detailed below in **Table 1** (as adapted from the NMP). The monitoring locations and noise criteria for each are detailed in **Appendices I** and **II**.

|                                         | Table 1                                                                |      |                                |                                        |  |  |  |  |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------|------|--------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| WCC Attended Noise Monitoring Programme |                                                                        |      |                                |                                        |  |  |  |  |  |  |  |
| Monitoring Point                        | Monitoring Point Duration ID Receiver Relevant Monitoring Requirements |      |                                |                                        |  |  |  |  |  |  |  |
| A                                       | 15 minutes <sup>1</sup>                                                | R5   | Rosehill                       | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |
| R1                                      | $60 \text{ minutos}^2$                                                 | R7   | 83 Wadwells Lane               | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |
|                                         | 00 minutes                                                             | R8*  | Almawillee                     | Private Agreement                      |  |  |  |  |  |  |  |
| B0                                      | $60 \text{ minutos}^2$                                                 | R9   | Gedhurst                       | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |
| DZ                                      | 00 minutes                                                             | R22  | Mountain View                  | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |
| C                                       | 15 minutes <sup>1</sup>                                                | R10* | Meadholme                      | Private Agreement                      |  |  |  |  |  |  |  |
| C                                       |                                                                        | R11* | Glenara                        | Filvate Agreement                      |  |  |  |  |  |  |  |
| D                                       | 60 minutes <sup>2</sup>                                                | R24  | Hazeldene                      | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |
| E                                       | 60 minutes <sup>2</sup>                                                | R12  | Quipolly Railway Cottage       | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |
| F                                       | 60 minutes <sup>2</sup>                                                | R96  | Talavera                       | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |
| G                                       | 15 minutes <sup>1</sup>                                                | R97  |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |
| Н                                       | 15 minutes <sup>1</sup>                                                | R98* | Kyooma                         | Private Agreement                      |  |  |  |  |  |  |  |
| I                                       | 60 minutes <sup>2</sup>                                                | R57  | Kurrara Street <sup>@</sup>    | 60 minutes as per EPL 12290            |  |  |  |  |  |  |  |
| J                                       | 15 minutes <sup>1</sup>                                                |      | Coronation Avenue <sup>@</sup> | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |
| К                                       | 15 minutes <sup>1</sup>                                                | R21* | Alco Park                      | Private Agreement                      |  |  |  |  |  |  |  |
| L                                       | 15 minutes <sup>1</sup>                                                | R103 |                                | PA10_0059 Private Property outside NMZ |  |  |  |  |  |  |  |

Notes accompanying the table are on the following page

\* - WCC has a private agreement for noise impacts with these property owners

@ - Kurrara Street is representative of sensitive receptors in southern Werris Creek while Coronation Avenue is representative of sensitive receptors in central Werris Creek.

NMZ - Noise Management Zone of properties with project specific noise criteria between 35dB(A) and 40dB(A);

- Note 1: For each monthly monitoring event a total of 15 minutes (per location) during the day period, and 15 (per location) during the evening <u>or</u> night period;
- Note 2: For each monthly monitoring event a total of 60 minutes (per location) during the day period, and 60 minutes (per location) during the evening <u>or</u> night period.

Monitoring points B1, B2, C and K are considered representative of multiple receivers because they are sufficiently close together that therefore noise monitoring at the monitoring points are acoustically representative of individual receivers in accordance with EPL 12290 Condition L4.6.

EPL 12290 Condition L4.6 indicates that noise monitoring be conducted;

- Approximately on the property boundary, where any dwelling is situated 30m or less from the property boundary closest to the premises; or
- Within 30m of a dwelling façade, but not closer than 3m, where any dwelling on the property is situated more than 30m from the property boundary closest to the premises; or, where applicable
- Within 50m of the boundary of a National Park or Nature Reserve.

EPL 12290 Condition L4.3 indicates that the relevant noise limits apply under all meteorological conditions except for the following;

- 1. Wind speeds greater than 3m/s at 10m above ground level; or
- Temperature inversion conditions of up to 12°/100m and wind speeds greater than 2m/s at 10m above ground level; or
- 3. Temperature inversion conditions greater than 12°/100m.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NSW Industrial Noise Policy must be applied, as appropriate, to the measured noise levels.

To determine compliance with the L1 (1 min) sleep disturbance noise criterion the noise measurement equipment must be located within 1m of a dwelling façade.

### Monitoring Equipment

Attended noise monitoring was conducted with Brüel & Kjær Type 2250 and 2260 Precision Sound Analysers. These instruments have Type 1 characteristics as defined in AS1259-1982 "Sound Level Meters" and have current NATA calibration. Field calibration is carried out at the start and end of each monitoring period.

A-weighted noise levels were measured over the appropriate monitoring periods (15 or 60 minutes) with data acquired at 1 or 2 second statistical intervals and the meter set to "fast" response. Each 1 or 2 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing INP 'modifying factors'. Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.



### **Measurement Analysis**

The operational noise criteria for compliance with Condition L4.1 of EPL 12290 are based on a 15 minute Leq noise level. The procedures detailed in Condition M8.2 of EPL 12290 require noise monitoring for significantly longer periods than that of the compliance criteria. To determine compliance with the EPL conditions the worst case 15 minute period, in relation to mine noise, was extracted from each measurement and compared to the criteria in Condition L4.1.

This worst case 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from WCC was audible Bruel & Kjaer "*Evaluator*" analysis software was used to quantify the contributions of the mine and other significant noise sources to the overall level. Mine noise from WCC is shown in the tables in bold type. Where noise from WCC is listed as faintly audible, this means the noise levels from the mine were at least 10 dB below the ambient level during the measurement and not measurable.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise shown.

When no mine noise was audible at a monitoring location during a one hour survey, a representative 15 minute noise measurement was made with observations carried out for the remainder of the applicable time period. In these instances, the measured noise level for the representative 15 minute period is that shown in the tables below.

Meteorological data used in this report were supplied by the mine from their automatic weather station M2 which is located on top of the overburden emplacement.

### WCC Operations

WCC operations on Tuesday 22<sup>nd</sup> October 2013 had the 5600 excavator in Strip 15 centre at RL370m, 3600 excavator in Strip 13 west at RL330m; a 1900 excavator in Strip 15 centre at RL370m. Day and night shift had the overburden truck fleets from the centre pit running via the east to the western RL420m (out of pit) dump or the western overburden trucks to RL390m western inpit dump. Because of elevated noise levels to the east of WCC, both 1900 excavators (and trucks) were suspended at 7:05pm and 7:15pm respectively. The 5600 excavator (and trucks) was suspended intermittently after 7:25pm to manage noise levels below 35dBA.

A total of 18.1 hours of excavator production (across 3 excavators) and 56 hours of truck production (across 3x785 trucks and 7x793 trucks) were lost to manage noise impacts. The crushing plant and train load out operated to 3:30am with the dozers on the train load out suspended between 7:30pm and 9:20pm with no trains loaded.

### Noise Compliance Assessment

The results of the noise measurements are shown below in Tables 2 and 3.

For logistical reasons the day time monitoring was completed on the morning of Wednesday 23<sup>rd</sup> October as noted in Table 2.



| Table 2               |           |        |               |                     |                        |                                                           |  |  |
|-----------------------|-----------|--------|---------------|---------------------|------------------------|-----------------------------------------------------------|--|--|
|                       |           | W      | CC Noise Moni | toring Results -    | - 22/23 Octobe         | r 2013 (Day)                                              |  |  |
|                       |           | dB(A), | Criterion     | Inversion           | Wind                   |                                                           |  |  |
| Location              | Time      | Leq    | dB(A) Leq     | <sup>o</sup> C/100m | speed                  | Identified Noise Sources                                  |  |  |
|                       |           |        |               |                     | (m/s),dir <sup>o</sup> |                                                           |  |  |
| A R5 Rosehill         | 4:42 pm   | 43     | 35            | n/a                 | 5.2,288                | Birds & insects (43), traffic (30), WCC inaudible         |  |  |
| B1 R7 83 Wadwells     | 3:40 pm   | 49     | 37            | n/a                 | 4.4,282                | Birds & insects (49), traffic (33), WCC inaudible         |  |  |
| Lane/R8 Almawillee    |           |        |               |                     |                        |                                                           |  |  |
| B2 R9Gedhurst/ R22    | 5:03 pm   | 45     | 37/36*        | n/a                 | 4.2,294                | Birds & insects (45), traffic 925), WCC inaudible         |  |  |
| Mountain View         |           |        |               |                     |                        |                                                           |  |  |
| C R10 Meadholme/      | 7:02 am** | 43     | 39            | n/a                 | 2.0/336                | Traffic (41), birds & insects (38), WCC (32)              |  |  |
| R11 Glenara           |           |        |               |                     |                        |                                                           |  |  |
| D R24 Hazeldene       | 3:38 pm   | 44     | 37            | n/a                 | 4.2,284                | Birds & insects (44), traffic (30), WCC barely audible    |  |  |
| E R12 Railway Cottage | 4:55 pm   | 49     | 38            | n/a                 | 4.2,294                | Traffic (47), birds & insects (42), WCC inaudible         |  |  |
| F R96 Talavera        | 2:33 pm   | 36     | 38            | n/a                 | 3.7,286                | Birds & insects (34), traffic (30), WCC (27)              |  |  |
| <b>G</b> R97          | 1:45 pm   | 38     | 35            | n/a                 | 4.2,305                | Wind (36), birds & insects (34), WCC barely audible       |  |  |
| H R98 Kyooma          | 2:04 pm   | 35     | 36            | n/a                 | 3.0,327                | Birds & insects (32), wind (32), WCC (23)                 |  |  |
| I R57 Kurrara St      | 1:50 pm   | 46     | 35            | n/a                 | 3.9,298                | Birds (43), trains (42), traffic (36), WCC inaudible      |  |  |
| J R57 Coronation Ave  | 7:06 am** | 52     | 35            | n/a                 | 3.9/357                | Traffic (49), birds & insects (48), trains (40), domestic |  |  |
|                       |           |        |               |                     |                        | noise (35), WCC inaudible                                 |  |  |
| K R21 Alco Park       | 2:55 pm   | 43     | 39            | n/a                 | 6.2,295                | Train (42), traffic (33), birds & insects (30), WCC       |  |  |
|                       |           |        |               |                     |                        | inaudible                                                 |  |  |
| L R103                | 3:13 pm   | 46     | 35            | n/a                 | 5.2,268                | Birds & insects (42), cattle (41), traffic (40), WCC      |  |  |
|                       |           |        |               |                     |                        | inaudible                                                 |  |  |

\* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.

\*\* Monitoring on 23/10/13

| Table 3               |                                                                |                     |        |           |                                |                                                        |  |  |  |  |
|-----------------------|----------------------------------------------------------------|---------------------|--------|-----------|--------------------------------|--------------------------------------------------------|--|--|--|--|
|                       | WCC Noise Monitoring Results – 22 October 2013 (Evening/Night) |                     |        |           |                                |                                                        |  |  |  |  |
|                       |                                                                | dB(A),              | dB(A), | Criterion | Inversion <sup>o</sup> C/100m, |                                                        |  |  |  |  |
| Location              | Time                                                           | L1                  | Leq    | dB(A) Leq | Wind speed                     | Identified Noise Sources                               |  |  |  |  |
|                       |                                                                | (1min) <sup>1</sup> |        |           | (m/s),dir <sup>o</sup>         |                                                        |  |  |  |  |
| A R5 Rosehill         | 7:13 pm                                                        | n/a                 | 41     | 35        | Lapse, 3.9/309                 | Insects (40), traffic (32), WCC inaudible              |  |  |  |  |
| B1 R7 83 Wadwells     | 11:34 pm                                                       | 39                  | 36     | 37        | +1.6,6.7,353                   | WCC (34), birds & insects (32)                         |  |  |  |  |
| Lane/R8 Almawillee    |                                                                |                     |        |           |                                |                                                        |  |  |  |  |
| B2 R9Gedhurst/ R22    | 7:34 pm                                                        | 35                  | 38     | 37/36*    | +1.6,3.1,331                   | Birds & insects (35), traffic (32), WCC (28)           |  |  |  |  |
| Mountain View         |                                                                |                     |        |           |                                |                                                        |  |  |  |  |
| C R10 Meadholme/ R11  | 8:37 pm                                                        | 41                  | 36     | 39        | +2.6,3.6,314                   | Traffic (33), WCC (32), insects (28)                   |  |  |  |  |
| Glenara               | -                                                              |                     |        |           |                                |                                                        |  |  |  |  |
| D R24 Hazeldene       | 8:55 pm                                                        | 30                  | 39     | 37        | +4.2,4.6,351                   | Traffic (37), insects (31), WCC (25)                   |  |  |  |  |
| E R12 Railway Cottage | 10:25 pm                                                       | 36                  | 42     | 38        | +2.0,5.8,349                   | Traffic (41), WCC (32), birds & insects (30)           |  |  |  |  |
| F R96 Talavera        | 9:11 pm                                                        | 41                  | 42     | 37        | +4.7,4.8,352                   | Birds & insects (42), WCC (32)                         |  |  |  |  |
| <b>G</b> R97          | 8:20 pm                                                        | 42                  | 51     | 35        | +2.6,3.3,342                   | Insects (51), WCC (33), train (30)                     |  |  |  |  |
| H R98 Kyooma          | 8:45 pm                                                        | 42                  | 38     | 36        | +2.7,4.1,336                   | WCC (35), insects (35), traffic (25)                   |  |  |  |  |
| I R57 Kurrara St      | 10:42 pm                                                       | n/a                 | 42     | 35        | +1.8,5.8,349                   | Frogs & insects (40), traffic (36), trains (32), WCC   |  |  |  |  |
|                       |                                                                |                     |        |           |                                | inaudible                                              |  |  |  |  |
| J R57 Coronation Ave  | 7:15 pm                                                        | n/a                 | 50     | 35        | Lapse, 3.9, 309                | Traffic (47), birds & insects (46), trains (37), WCC   |  |  |  |  |
|                       |                                                                |                     |        |           |                                | inaudible                                              |  |  |  |  |
| K R21 Alco Park       | 10:01 pm                                                       | n/a                 | 44     | 37        | +5.1,5.3,354                   | Insects (43), trains (33), WCC barely audible          |  |  |  |  |
| L R103                | 10:20 pm                                                       | n/a                 | 42     | 35        | +4.4,6.6,355                   | Insects (41), trains (33), traffic (30), WCC inaudible |  |  |  |  |

1. L1 (1 min) from mine noise only. \* Gedhurst noise criterion is 37dB(A) Leq while Mountain View noise criterion is 36 dB(A) Leq.



The results in Tables 2 and 3 indicate that, under the operational and atmospheric conditions at the time, the measured noise levels did not exceed the relevant noise criterion at any time or location.

Data from those times where WCC operations were audible were analysed using the *"Evaluator"* software. This analysis showed the noise did not contain any tonal, impulsive or low frequency components as per definitions in the NSW Industrial Noise Policy.

In addition to the operational noise, the noise from WCC must not exceed **45 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am. This is to minimise the potential for sleep disturbance as a result of individual loud noises from the mine. The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the façade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations. It must be noted, however, that the sleep disturbance criterion is to be measured near a bedroom window. As the internal layout of each residence is not known, to consider a worst case, this is assumed to be facing the operational noise monitoring location.

As shown in Table 3, during the night time measurement circuit the L1 (1 min) noise from WCC did not exceed the relevant criterion at any time or location.

### Plant Sound Power Levels

In keeping with the NMP, the sound power levels of the major noise producing plant and equipment operating on the WCC site is to be determined from sound pressure level measurements. The measurement programme is to be undertaken progressively to capture noise levels from all plant over the period of a year.

The results of the sound power level calculations to date are shown in **Appendix III**. The table in Appendix III lists SWL's for plant items as taken from those used in the noise modelling for the latest EA for WCM. The SWL's from the EA, therefore, represent a calculated Leq (15 minute) noise level. For mobile plant this calculation is based on the length of time each noise source representing a plant item(s) is at a particular location on the mine site. For example the noise model includes a number of noise sources located at intervals along the various haul roads to approximate the haul fleet working throughout a 15 minute operational period. The SWL for the point source is calculated based on the length of time any truck is expected to be passing that location during the assessment period.

For mobile plant, the measured Leq noise levels in the table in Appendix III represent a single passby for each plant item whereas the values adopted in the EA (particularly for haul trucks) are for the 15-minute calculated sound power level of 350m long sections of haul road. These values are typically 7-10 dB lower than the single pass-by level.







We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on 4954 2276.

Yours faithfully, SPECTRUM ACOUSTICS PTY LIMITED

Author:

an ,

Ross Hodge Acoustical Consultant

Review:

Neil Perit

Neil Pennington Acoustical Consultant



USTICS

Appendix I



Attended Noise Monitoring Locations





## Appendix II

Noise Limits

| Location |                               | Day                        | Evening/Night              | Night                 | Long Term                   | Acquisition                |
|----------|-------------------------------|----------------------------|----------------------------|-----------------------|-----------------------------|----------------------------|
|          |                               | L <sub>Aeq,15</sub> minute | L <sub>Aeq,15</sub> minute | L <sub>A1(1min)</sub> | L <sub>Aeq, 15</sub> minute | L <sub>Aeq,15</sub> minute |
| R7       | 83 Wadwells Lane              | 37                         | 37                         | 45                    | 35                          | 40                         |
| R9       | "Gedhurst"                    | 37                         | 37                         | 45                    | 35                          | 40                         |
| R12      | "Quipolly Railway<br>Cottage" | 38                         | 38                         | 45                    | 35                          | 40                         |
| R22      | "Mountain View"               | 36                         | 36                         | 45                    | 35                          | 40                         |
| R24      | "Hazeldene"                   | 37                         | 37                         | 45                    | 35                          | 40                         |
| R96      | "Talavera" <sup>#</sup>       | 38                         | 37                         | 45                    | 35                          | 40                         |
| All c    | other privately-owned land    | 35                         | 35                         | 45                    | 35                          | 40                         |

### LOM Project Revised Noise Criteria

# "Talavera" property was listed in the EA under its previous property name of "Millbank"

|     | Location       | Noise Works Criteria<br>dB(A) Leq | Noise Acquisition Criteria<br>dB(A) Leq |
|-----|----------------|-----------------------------------|-----------------------------------------|
| R8  | "Almawillee"   | 40                                | 45                                      |
| R10 | "Meadholme"    | 40                                | 45                                      |
| R11 | "Glenara"      | 40                                | 45                                      |
| R20 | "Tonsley Park" | 40                                | 45                                      |
| R21 | "Alco Park"    | 40                                | 45                                      |
| R98 | "Kyooma"       | 40                                | 45                                      |

### Table 21: Properties with Private Agreements Noise Criteria





## Appendix III

Plant Sound Power Levels

| Plant Item                                                                  |       | EA SWLs                   |                           |            | dB(A)      | Data Maggurad |
|-----------------------------------------------------------------------------|-------|---------------------------|---------------------------|------------|------------|---------------|
| Туре                                                                        | No.   | Leq                       | Lmax                      | aB(A) Leq  | Lmax       | Date measured |
| Haul truck CAT 785C<br>(unattenuated)                                       | 608   | 108                       | 116                       | 120        | 122        | 17/7/12       |
| Haul truck CAT 785C<br>(attenuated)                                         | 608   | 108                       | 116                       | 115        | 118        | 8/8/13        |
| Haul truck CAT 785C<br>(unattenuated)                                       | 614   | 108                       | 116                       |            | 120        | 17/7/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 609   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 610   | 108                       | 116                       | 121        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 611   | 108                       | 116                       | 120        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 600   | 108                       | 116                       | 119        |            | 11/9/12       |
| Haul truck CAT 785C<br>(unattenuated)                                       | 613   | 108                       | 116                       | 122        |            | 8/8/13        |
| Haul truck CAT 785C<br>(unattenuated)                                       | 624   | 108                       | 116                       | 121        |            | 8/8/13        |
| Water Cart                                                                  | WA897 | 111                       | 118                       | 113        |            | 11/9/12       |
| Scraper                                                                     | SC882 | 118                       | 121                       | 113        |            | 11/9/12       |
| Excavator (PC 3600)                                                         | EX551 | 116                       | 120                       | 115        |            | 11/9/12       |
| Dozer                                                                       | 829   | 107                       | 114                       | 114        |            | 11/9/12       |
| Crushing Plant                                                              | n/a   | 114                       | 116                       | 118        |            | 11/9/12       |
| Haul truck CAT 785C<br>Horn pre attenuation                                 | 608   | 108                       | 116                       |            | 129        | 17/7/12       |
| Haul truck Cat 785C<br>Horn post attenuation                                | 608   | 108                       | 116                       |            | 124        | 11/9/12       |
| Haul truck CAT 793XQ                                                        | 662   | n/a                       | n/a                       | 115        | 118        | 18/12/12      |
| Excavator (PC4000)                                                          | EX837 | 116                       | n/a                       | 115        |            | 18/12/12      |
| Dozer D10T<br>(1 <sup>st</sup> gear)                                        | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 113<br>109 | 128<br>121 | 18/12/12      |
| Dozer D10T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear) | 505   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 118<br>109 | 124<br>113 | 6/2/13        |
| Dozer D9T on stockpile<br>(2 <sup>nd</sup> gear)<br>(1 <sup>st</sup> gear)  | 501   | 107<br>(1 <sup>st</sup> ) | 114<br>(1 <sup>st</sup> ) | 119<br>113 | 122<br>118 | 6/2/13        |
| Excavator (EX 5600)                                                         | 570   | 121                       | n/a                       | 116        | 119        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 660   | 115                       | n/a                       | 116        | 119        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 661   | 115                       | n/a                       | 116        | 118        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 662   | 115                       | n/a                       | 115        | 118        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 663   | 115                       | n/a                       | 116        | 119        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 664   | 115                       | n/a                       | 114        | 117        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 665   | 115                       | n/a                       | 115        | 117        | 8/8/13        |
| Haul truck CAT 793XQ                                                        | 666   | 115                       | n/a                       | 115        | 117        | 8/8/13        |



| Haul truck CAT 793XQ | 667    | 115 | n/a | 116 | 119 | 8/8/13 |
|----------------------|--------|-----|-----|-----|-----|--------|
| Hitachi Excavator    | 543    | 116 | n/a | 115 | 119 | 8/8/13 |
| Grader               | 849    | n/a | n/a | 110 | 112 | 8/8/13 |
| Warrior 2400 crusher | n/a    | n/a | n/a | 117 | 117 | 8/8/13 |
| Kleeman screen       | MCR401 | n/a | n/a | 111 | 112 | 8/8/13 |

\*Leq noise level from vehicle pass by only (modelled levels in the EA for LOM are based on an Leq (15 min) for an attenuated haul truck.



# Appendix 5 – Blasting Monitoring Results

| Shot        |                | Time    |                                        | _       |            |         |            |          |            |          | N          | ERRIS CRI | EEK COAL E<br>AUGUST | LASTING | RESULTS            |            |                   |           |      |        |
|-------------|----------------|---------|----------------------------------------|---------|------------|---------|------------|----------|------------|----------|------------|-----------|----------------------|---------|--------------------|------------|-------------------|-----------|------|--------|
| number      | Date fired     | Fired   | Location                               | Туре    | Glenar     | a R11   | Tonslev    | Park R20 | Werris Cr  | reek R62 | Talaver    | a R96     | COMPL                | ANCE    | ARTC Culvert       | COMPLIANCE | TEMPERATURE       | WIN       | ID   | FUME   |
|             |                |         |                                        |         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)   | Vib (mm/s)           | OP (dB) | Vib (mm/s) OP (dB) | Vib (mm/s) | Inversion oC/100m | Direction | m/s  | 0 to 5 |
| 2013-52     | 6/08/2013      | 13:15   | S13_3-7_330 TSB37                      | TSB     | <0.25      | <109.8  | 1.02       | 108.6    | 0.60       | 102.5    | 0.07       | 110.6     | 10.00                | 120.0   | 12.23 117.7        | 50.00      | -2.9              | 331       | 8.4  | 0      |
| 2013-53     | 13/08/2013     | 10:09   | S13 8-10 Decoal UG collapse pt1 TSB38  | TSB     | < 0.25     | <109.8  | 0.99       | 84.4     | 0.34       | 94.3     | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -1.8              | 4         | 3.2  | 0      |
| 2013-54     | 16/08/2013     | 12:08   | S13_14-17_330                          | IB      | < 0.25     | <109.8  | 0.70       | 100.8    | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -3.7              | 177       | 4.6  | 0      |
| 2013-55     | 16/08/2013     | 12:08   | S13_10_330 trim                        | IB      | <0.25      | <109.8  | 0.70       | 100.8    | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -3.7              | 177       | 4.6  | 0      |
| 2013-56     | 22/08/2013     | 13:41   | S13_8-10_330 DE Coal UG Collapse       | TSB     | < 0.25     | <109.8  | 1.23       | 97.7     | 0.39       | 100.4    | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.0              | 332       | 8.4  | 0      |
| 2013-57     | 23/08/2013     | 13:14   | S13_8-10_DE Coal                       | IB      | <0.25      | <109.8  | 0.63       | 111.2    | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | 2.53 119.7         | 50.00      | -3.3              | 295       | 6.3  | 1      |
| 2013-58     | 29/08/2013     | 12:09   | S13_18_330                             | IB      | <0.25      | <109.8  | <0.25      | <109.8   | 0.60       | 100.6    | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.6              | 23        | 3.5  | 1      |
| 2013-59     | 29/08/2013     | 12:09   | S13_8-10_330 Pt2                       | IB      | <0.25      | <109.8  | <0.25      | <109.8   | 0.60       | 100.6    | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.6              | 23        | 3.5  | 1      |
| 2013-60     | 30/08/2013     | 12:13   | S15_4-5_DE UG Collapse                 | TSB     | <0.25      | <109.8  | 0.85       | 106.9    | <0.25      | <109.8   | 0.45       | 101.2     | 10.00                | 120.0   | Not Monitored      | 50.00      | -3.3              | 343       | 10.2 | 1      |
| TOTALS      | AUGUST 2013    | # BLAST | 36                                     | AVERAGE | <0.25      | <109.8  | 0.87       | 101.5    | 0.51       | 99.7     | 0.26       | 105.9     | 5.00                 | 115.0   |                    |            |                   |           |      |        |
| TOTALS      | AUGUST 2013    | # BLAST | 36                                     | HIGHEST | <0.25      | <109.8  | 1.23       | 111.2    | 0.60       | 102.5    | 0.45       | 110.6     | 10.00                | 120.0   |                    |            |                   |           |      |        |
| TOTALS      | ANNUAL         | # BLAST | 36                                     | AVERAGE | 0.32       | 97.6    | 0.86       | 102.0    | 0.47       | 101.9    | 0.17       | 106.8     | 5.00                 | 115.0   |                    |            |                   |           |      |        |
| TOTALS      | ANNUAL         | %       | >115dB(L) or 5mm/s                     | 36      | 0%         | 0%      | 0%         | 2.8%     | 0%         | 2.8%     | 0%         | 2.8%      | 5%                   | 5%      |                    |            |                   |           |      |        |
|             |                |         |                                        |         |            |         |            |          |            |          | W          | ERRIS CRI | EEK COAL E           | LASTING | RESULTS            |            |                   |           |      |        |
| Shot        | Date fired     | Time    | Location                               | Type    |            |         |            |          | 1          |          |            |           | SEPTEMBE             | R 2013  | 1                  | 1          | 1                 |           |      |        |
| number      |                | Fired   |                                        |         | Glenar     | a R11   | Tonsley    | Park R20 | Werris Cr  | reek R62 | Talaver    | a R96     | COMPL                | IANCE   | ARTC Culvert       | COMPLIANCE | TEMPERATURE       | WIN       | ID   | FUME   |
|             |                |         |                                        |         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)   | Vib (mm/s)           | OP (dB) | Vib (mm/s) OP (dB) | Vib (mm/s) | Inversion oC/100m | Direction | m/s  | 0 to 5 |
| 2013-61     | 2/09/2013      | 13:10   | S16_5-8_Decoal_UG Collapse             | TSB     | <0.25      | <109.8  | 0.51       | 102.4    | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.5              | 181       | 2.1  | 1      |
| 2013-62     | 4/09/2013      | 13:14   | S13-8-10_DE Coal UG Collapse           | ISB     | <0.25      | <109.8  | <0.25      | <109.8   | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.3              | 38        | 2.0  | 0      |
| 2013-63     | 5/09/2013      | 13:04   | \$13_9-10_330                          | IB      | <0.25      | <109.8  | 0.29       | 92.9     | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.6              | 342       | 2.8  | 0      |
| 2013-64     | 6/09/2013      | 13:15   | \$13_22_350                            | IB      | <0.25      | <109.8  | <0.25      | <109.8   | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.7              | 336       | 2.9  | 0      |
| 2013-65     | 6/09/2013      | 13:15   | S12_14_330                             | IB      | <0.25      | <109.8  | <0.25      | <109.8   | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.1              | 330       | 2.9  | 0      |
| 2013-66     | 9/09/2013      | 12:18   | S15_6-8_3/0                            | OB      | <0.25      | <109.8  | 0.77       | 103.4    | 0.29       | 102      | 0.28       | 93.3      | 10.00                | 120.0   | Not Monitored      | 50.00      | -3.1              | 344       | 6    | 0      |
| 2013-67     | 10/09/2013     | 14:48   | S16_4-6_400_0G Collapse                | I SB    | <0.25      | <109.8  | <0.25      | <109.8   | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | 0.13 110.3         | 50.00      | -2.2              | 332       | 9.3  | 0      |
| 2013-00A    | 12/00/2013     | 12.10   | S15_50 (Cap Rocks)                     | OB      | <0.25      | <109.0  | <0.25      | <109.0   | <0.25      | <109.0   | <0.25      | <109.0    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.3              | 130       | 1.4  | 0      |
| 2013-06     | 12/09/2013     | 13.10   | 515_11-17_305_Diackseam                | UB      | <0.25      | <109.0  | <0.25      | <109.8   | <0.25      | <109.0   | <0.25      | <109.0    | 10.00                | 120.0   | NOT MONITORED      | 50.00      | -3.2              | 304       | 4.3  | 0      |
| 2013-69     | 20/00/2013     | 15:16   | S15_2-6_DE UG Collapse & T3B40         | TOD     | <0.25      | <109.0  | <0.25      | <109.8   | <0.25      | <109.0   | <0.25      | <109.0    | 10.00                | 120.0   | <0.25 < 109.0      | 50.00      | -3.0              | 267       | 0.2  | 0      |
| 2013-718-72 | 25/09/2013     | 12:08   | S13_2-0_00 Collapse Fiz                | TSB     | <0.25      | <109.0  | 0.61       | 97.7     | 0.20       | 96.5     | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.5              | 340       | 3.0  | 0      |
| 2013-73     | 27/09/2013     | 15:20   | S13. 8-10. DEcoal LIG Collanse         | TSB     | <0.25      | <100.0  | <0.01      | <109.8   | <0.25      | <109.8   | <0.25      | <100.0    | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.5              | 325       | 0.4  | 0      |
| TOTALS      | SEPTEMBER 2013 | # BLAST | 49                                     | AVERAGE | <0.25      | <109.8  | 0.55       | 99.1     | 0.29       | 99.3     | 0.28       | 93.3      | 5.00                 | 115.0   |                    | 30.00      | -1.0              | 525       | 0.4  | Ū      |
| TOTALS      | SEPTEMBER 2013 | # BLAST | 49                                     | HIGHEST | <0.25      | <109.8  | 0.77       | 103.4    | 0.29       | 102.0    | 0.28       | 93.3      | 10.00                | 120.0   |                    |            |                   |           |      |        |
| TOTALS      | ANNUAL         | # BLAST | 49                                     | AVERAGE | 0.32       | 97.6    | 0.80       | 101.5    | 0.44       | 101.5    | 0.19       | 104.1     | 5.00                 | 115.0   |                    |            |                   |           |      |        |
| TOTALS      | ANNUAL         | %       | >115dB(L) or 5mm/s                     | 49      | 0%         | 0%      | 0%         | 2.0%     | 0%         | 2.0%     | 0%         | 2.0%      | 5%                   | 5%      |                    |            |                   |           |      |        |
|             |                |         |                                        |         |            |         |            |          |            | 1 1      | W          | ERRIS CR  | EEK COAL E           | LASTING | RESULTS            |            |                   |           |      |        |
| Shot        | Data fired     | Time    | Leastien                               | Tumo    |            |         |            |          |            |          |            |           | OCTOBER              | 2013    |                    |            |                   |           |      |        |
| number      | Date fired     | Fired   | Location                               | Type    | Glenar     | a R11   | Tonsley I  | Park R20 | Werris Cr  | reek R62 | Talaver    | a R96     | COMPL                | ANCE    | ARTC Culvert       | COMPLIANCE | TEMPERATURE       | WIN       | ID   | FUME   |
|             |                |         |                                        |         | Vib (mm/s) | OP (dB) | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)  | Vib (mm/s) | OP (dB)   | Vib (mm/s)           | OP (dB) | Vib (mm/s) OP (dB) | Vib (mm/s) | Inversion oC/100m | Direction | m/s  | 0 to 5 |
| 2013-74     | 1/10/2013      | 10:49   | S15_19-23_370_TSB36_Pt1                | TSB     | <0.25      | <109.8  | <0.25      | <109.8   | 0.55       | 87       | 0.34       | 107.1     | 10.00                | 120.0   | Not Monitored      | 50.00      | -1.6              | 345       | 9.7  | 0      |
| 2013-75     | 4/10/2013      | 15:41   | S13_18-21_350-330_TSB41 Part1          | TSB     | < 0.25     | <109.8  | 0.88       | 101.3    | 0.60       | 97.4     | 0.39       | 100.6     | 10.00                | 120.0   | Not Monitored      | 50.00      | -3.4              | 196       | 4.4  | 0      |
| 2013-76     | 10/10/2013     | 10:46   | S13_18-21_TSB42                        | TSB     | <0.25      | <109.8  | 0.79       | 105.0    | 0.37       | 101.5    | 0.42       | 105.6     | 10.00                | 120.0   | Not Monitored      | 50.00      | -2.8              | 343       | 4.7  | 0      |
| 2013-77     | 14/10/2013     | 13:16   | S15_11-17_370_Blackseam_Part1          | OB      | <0.25      | <109.8  | 0.74       | 107.0    | 0.37       | 103.5    | 0.41       | 105.0     | 10.00                | 120.0   | Not Monitored      | 50.00      | -4.2              | 268       | 3.3  | 0      |
| 2013-78     | 21/10/2013     | 12:11   | S13_10-17_Ccoal West                   | IB      | <0.25      | <109.8  | 1.04       | 93.9     | 0.50       | 94.3     | 0.50       | 104.9     | 10.00                | 120.0   | Not Monitored      | 50.00      | -4.3              | 293       | 4.6  | 0      |
| 2013-79     | 25/10/2013     | 10:15   | S13_10-17_Ccoal Decoal UG collapse pt1 | TSB     | < 0.25     | <109.8  | 1.54       | 97.7     | 0.66       | 83.5     | 0.40       | 101.6     | 10.00                | 120.0   | Not Monitored      | 50.00      | -4.2              | 290       | 1.7  | 0      |
| 2013-80     | 28/10/2013     | 13:08   | S13_7_DECoal Wedge                     | IB      | <0.25      | <109.8  | 0.43       | 97.7     | <0.25      | <109.8   | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -3.5              | 303       | 5.1  | 0      |
| 2013-81     | 31/10/2013     | 13:09   | S13_11-DE Coal_UG Collapse             | IB      | <0.25      | <109.8  | 0.61       | 108.4    | 0.34       | 109.5    | <0.25      | <109.8    | 10.00                | 120.0   | Not Monitored      | 50.00      | -4.1              | 151       | 2.5  | 0      |
| TOTALS      | OCTOBER 2013   | # BLAST | 8                                      | AVERAGE | <0.25      | <109.8  | 0.86       | 101.6    | 0.48       | 96.7     | 0.41       | 104.1     | 5.00                 | 115.0   | -                  |            |                   |           |      |        |
| TOTALS      | OCTOBER 2013   | # BLAST | 8                                      | HIGHEST | <0.25      | <109.8  | 1.54       | 108.4    | 0.66       | 109.5    | 0.50       | 107.1     | 10.00                | 120.0   | -                  |            |                   |           |      |        |
| TOTALS      | ANNUAL         | # BLAST | 5/<br>- 115-10(1) or Emm/o             | AVERAGE | 0.32       | 97.6    | 0.81       | 101.5    | 0.44       | 100.8    | 0.23       | 104.1     | 5.00                 | 115.0   | -                  |            |                   |           |      |        |

# Appendix 6 – Groundwater Monitoring Results

| SPECIAL CON |         | <u> </u> |          |          |                     |           |         |                    | 1        | 1        | 1           |                |                | -           | ł                | f role                          | 1               | l          | :                 |         |                   |          | 4           |         | Shep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | ) Acady (               | -                 | TW III.       | 'SAMPLES  | PROJECT          | ADDRES        | CLIENT-1     |
|-------------|---------|----------|----------|----------|---------------------|-----------|---------|--------------------|----------|----------|-------------|----------------|----------------|-------------|------------------|---------------------------------|-----------------|------------|-------------------|---------|-------------------|----------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-------------------|---------------|-----------|------------------|---------------|--------------|
| AMENTS: M   | CANN    | MW29     | MW27     | PUG      | P2                  | <u>۲</u>  | VW25B   | WW25A              | MW24A    | MW20     | MW178       | MW14B          | MW14           | MW11        | MW10             | 8MM                             | MW6             | MW5B       | MW5               | MW4B    | MW4               | MW3      | MW2         | MW1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | tinple (D / Bore)<br>(D |                   | RRIS CREEK M  | NAME 73.  | ID: WERRIS C     | S/OFFICE:     | VERRIS CREE) |
|             |         |          | olula    |          |                     |           | 24 9    | 14<br>1<br>1       | 5 9112   | 15 9 113 | 5 9         | <u>بر</u><br>م | 149            | -1          | 0 BC             | <u>) 4   9</u>                  | 249             | 249        | 249               | 4       | 24-9              | 25 01    | <u>}r</u> q | PHUC    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Dale                    | Sample ID Informs | INE AND SURIA | ٦<br>     | REEK COAL OL     |               | COAF 51A FIL |
|             | 10:17   |          | 5        | ×        | ~ 192 YV            | Und a     | 12.40   | 0۲: <sup>۲</sup> 1 | (0:35    | a ;      | 2112        | 95.0           | 9:40           | [           | 96:30            | 9:50                            | 11:50           | 10:30      | St Ol             | 14:05   | 11:20             | 01:41    | 51:51       | 13 50   | (LA)D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Time                    | Ilon              | ounos         | •         | MRIERLY GROU     |               |              |
|             |         |          | E<br>E   |          |                     | P.S.      |         | 1                  | S÷.≯     | 6        |             | 17 C           | 1.<br>1.<br>1. | <           | 16.93            |                                 | <u>5</u><br>15  | કે.જે      | <del>6</del> ,5,5 | 10 · 66 | 52.0              | 15-30    | 24.38       | 5 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S       | anding<br>er Leve       |                   |               |           | UNDWATERS        |               |              |
|             | 0.27    |          | 2        |          | X) (V)              |           |         |                    | <u> </u> | ې (<br>د | ، مر<br>د م | 2              | 0 9            |             | Ċ.O              | 20-1                            | 20.1            | <u>ر</u> ، | 51-1              | 0       |                   | 019      | 011         | 0.7     | Culture<br>Inn<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Martine<br>Ma | Bor     | ick nb<br>              | Bore Data         |               |           |                  |               |              |
| Cer         | 2×      |          | Hndry    | /        | <del>کر</del><br>13 | 2         |         |                    |          |          |             |                |                |             |                  |                                 | Sui 1           |            | Bail              | 1 51    | 1                 | S Punto  | N 190       | 5 18011 | Pump/<br>Ballar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pur     | је Тура                 |                   |               | 1.00 Mar. |                  |               | ;            |
| Manita      |         |          | ک<br>10  | <u>,</u> |                     |           |         |                    |          |          |             |                |                |             |                  | - <del>1</del> - <del>1</del> - |                 |            |                   |         | (8-4              | 1601     |             |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P<br>Ve | urge<br>Jerne           | Sampling Deta     |               | :         |                  |               |              |
| When re     | •       |          | 1 marite | <u>.</u> |                     |           |         |                    |          |          |             |                |                | S<br>S      |                  | 4                               | <del>۲</del> .۱ | ۶<br>۲     | ۔<br>در           | م       | an Steck          | Ś        | <u>ر</u>    | 1       | umbloc - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pur     | np Set<br>epith         |                   |               |           |                  |               |              |
| allined!    |         |          | <b>?</b> | >        |                     | 7         | vero a  |                    |          | -        |             |                |                | 5           |                  |                                 | نې<br>۲         | (          |                   |         | 5                 | 8<br>0   | हे<br>-     | 2121    | NG/CIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EC      | - Neid                  |                   |               |           | •                |               |              |
|             | Inne    | =        |          |          |                     | ->        | - Laone | )                  |          | -        |             |                | 200            |             |                  | R-L                             | 2               |            |                   |         | Hole              | 7        | )<br>0<br>+ | jo<br>S | pH units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH-     | feetd                   | State 1           | λ             |           |                  | >             | 0            |
| -           | paped   | -        |          |          |                     | -         |         | -                  |          |          |             |                |                | \$          |                  |                                 | 8               | 0          |                   |         |                   | 20       | 5-26        | 32-6    | റ്                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Тетр    | - field                 |                   |               |           | - Monthly Ground | TVRICENT INIC | UDIATION Na  |
|             |         |          |          |          |                     |           |         |                    |          |          |             |                |                |             | 200              | 1                               | SIA             | (40/-      | 1000              |         | <u>, val</u> e    | Clenr    | Clear       | Clar    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Арреа   | rance                   | -                 |               | 1 662     | d Walers - SWL   | ORY .         |              |
|             |         |          |          |          |                     |           |         |                    |          |          |             |                |                |             | N<br>N<br>N<br>N |                                 | 7.              | 2          |                   |         |                   | Z.       | 2,1         | 27      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0d      |                         | Field Observatio  |               |           | (Standing Waler  |               |              |
|             |         |          |          |          |                     |           |         |                    |          |          | K           |                |                |             | Steod 4          |                                 |                 | Clecr      | New C             |         | 2 Letter          |          |             | Crean   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cok     | Jur                     |                   | ÷             | ,         | I evel Only      |               |              |
| Tallaw      | Kijoa   | Cintre   | Other    | 51.0     | 74-12               | 6         | N P     | 1 chan             | 10,5     | E        | 14          |                | ×7.5<br>≥6     | 1           |                  |                                 |                 | - 6 Month  | 6 Month           |         |                   |          | e Maat      | E Mant  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                         |                   |               | -         |                  |               |              |
| ¢.a         | 21 - 12 | ।<br>रू  |          |          |                     | Sted.     | , Taw   | - 05-              | V Park   |          | 2           | 1              |                | -<br>-<br>- | K                | UI 111                          |                 | 11y (M.    | V VAL             | M.      | 11 <u>7 X 211</u> |          | R           |         | <br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                         | ,                 |               |           |                  |               |              |
|             | in the  | X 4      |          |          |                     | <br> <br> | 15      |                    | She      | dam 1    |             | <u>م</u><br>بر | - Lag          | •           | <u>wi (Ji</u> z  | -14                             | _ ^<br>\$       | le<br>le   | e · ( ter         | e - fra | moure             | 16 19001 | 110         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |                         |                   | ACIR          |           |                  | >             | •            |

CON - 5677 K71

j.

| Reportables / Apolytes<br>SAMPLERT: WE<br>SAMPLERT<br>SITE WER | APT.INC.SHEEL | THE AND SURFACE & COAL CLI |                | 15 Standing<br>Limbog Water Level                              | Bore depth port | Proge Type | Purge<br>Volume | B B D Pump Set<br>Depth | ຮົງ<br>EC - field |   | 모 공 · · · · · · · · · · · · · · · · · · | PH Lin tield Terms<br>PH - field Terms<br>PH - field Terms<br>PH - field BI-Monthly Q<br>C Temp - field BI-Monthly Q | PH - field<br>pH - field<br>remin<br>remp - field<br>Appearance<br>Appearance | PH International PH Field Tests - SWL (Standing Waters - SWL (Standi | PH Initia PH - field Appearance Field Observations<br>Colour Colour |
|----------------------------------------------------------------|---------------|----------------------------|----------------|----------------------------------------------------------------|-----------------|------------|-----------------|-------------------------|-------------------|---|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| F A                                                            | MW12          | us a a                     | 10:50          | 4.63                                                           | 4 0 0 0         |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| ( [<br>2 2                                                     | MW138 7       | 599                        | 13:10          | 4-69                                                           | 5 0<br>7 0      |            |                 | -                       |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| _1                                                             | MW15          | 25/9                       | 11:40          | 4.39                                                           | 0.2             |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                | MW17A 🔉       | 59                         | 12:20          | F.07                                                           | 0.5             | - 1        |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                | MW18A 2       | 10/20                      | 08:11          | 3.85                                                           | 1               |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| >                                                              | WW19A         | 1149                       | 12:40          | 2,8,2                                                          | 0-10            |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 2 2                                                            | MW21A         | 259                        | 11:10          | 7.09                                                           | 0.3             |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| +                                                              | MW22B         | x<br>q                     | <u>کر: ۱</u> ۱ | <b>6</b> 6-9                                                   | q<br>F          |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 1                                                              | MW23A         | 100                        | 13135          | 365                                                            | (- 0            |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                | MW23B         | 129                        | 13:40          | 0 <u>1</u> ;4                                                  | 0-i             |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                | MW28A         | 0                          | 05:20          | <u><u></u><br/><u></u><br/><u></u><br/><u></u><br/><u></u></u> | 0,1             |            |                 |                         | •                 |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|                                                                |               | -4<br>                     | 04:41          |                                                                |                 | e.S        |                 | <br>                    | King              | 0 | Xex-                                    | ser here                                                                                                             | ser here - 10 5                                                               | ver have - to suit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ver have - to suit                                                  |
|                                                                | la ranji      | b]st                       | m-20           | [ \ <del>`</del>                                               |                 |            |                 |                         |                   |   |                                         |                                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |

MM SE11672



|              | CER                             | TIFICATE OF ANALYSIS    |                                                       |
|--------------|---------------------------------|-------------------------|-------------------------------------------------------|
| Work Order   | ES1321110                       | Page                    | : 1 of 4                                              |
| Client       |                                 | Laboratory              | : Environmental Division Sydney                       |
| Contact      | : A WRIGHT                      | Contact                 | Client Services                                       |
| Address      | : 5-7                           | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                       |                         |                                                       |
|              | GUNNEDAH NSW 2380               |                         |                                                       |
| E-mail       | : awright@whitehavencoal.com.au | E-mail                  | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058                  | Telephone               | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068                  | Facsimile               | : +61-2-8784 8500                                     |
| Project      | : WCC 6 MONTHLY GROUNDWATER     | QC Level                | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 6600                          |                         |                                                       |
| C-O-C number | :                               | Date Samples Received   | : 25-SEP-2013                                         |
| Sampler      | : BP                            | Issue Date              | : 02-OCT-2013                                         |
| Site         | :                               |                         |                                                       |
|              |                                 | No. of samples received | : 5                                                   |
| Quote number | : SY/417/13                     | No. of samples analysed | : 5                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Descriptive Results



| NATA Accredited Laboratory 825 | Signatories |
|--------------------------------|-------------|
|--------------------------------|-------------|

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position                 | Accreditation Category |
|----------------|--------------------------|------------------------|
| Ankit Joshi    | Inorganic Chemist        | Sydney Inorganics      |
| Edwandy Fadjar | Organic Coordinator      | Sydney Organics        |
| Hoa Nguyen     | Senior Inorganic Chemist | Sydney Inorganics      |
| Kim Phan       | Sample Receipt Clerk     | ACIRL Sampling         |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company





#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- AC01: Bore data supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC02: Sampling data supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC04: Field observations supplied by ALS ACIRL.



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)          |               | Cli        | ent sample ID  | WER-MW1           | WER-MW2           | WER-MW4B          | WER-MW5           | WER-MW6           |
|--------------------------------------------|---------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                            |               |            |                | 114749            | 114750            | 114751            | 114752            | 114753            |
|                                            | Cli           | ent sampli | ng date / time | 24-SEP-2013 13:50 | 24-SEP-2013 13:15 | 24-SEP-2013 11:05 | 24-SEP-2013 10:45 | 24-SEP-2013 12:45 |
| Compound                                   | CAS Number    | LOR        | Unit           | ES1321110-001     | ES1321110-002     | ES1321110-003     | ES1321110-004     | ES1321110-005     |
| AC01: Bore Data                            |               |            |                |                   |                   |                   |                   |                   |
| Standing Water Level                       |               | 0.01       | m              | 54.9              | 26.2              | 10.7              | 8.53              | 12.4              |
| Stick up                                   |               | 0.01       | m              | 0.25              | 0.15              | 0.70              | 1.15              | 1.05              |
| AC02: Sampling Data                        |               |            |                |                   |                   |                   |                   |                   |
| Purge Type                                 |               | -          |                | Bail              | Тар               | Bail              | Bail              | Bail              |
| AC03: Field Tests                          |               |            |                |                   |                   |                   |                   |                   |
| Electrical Conductivity (Non               |               | 1          | µS/cm          | 1180              | 796               | 981               | 2280              | 1730              |
| Compensated)                               |               |            |                |                   |                   |                   |                   |                   |
| pH                                         |               | 0.01       | pH Unit        | 6.95              | 7.04              | 7.67              | 7.55              | 7.18              |
| Temperature                                |               | 0.1        | °C             | 22.6              | 22.2              | 19.5              | 21.0              | 21.8              |
| EA005P: pH by PC Titrator                  |               |            |                |                   |                   |                   |                   |                   |
| pH Value                                   |               | 0.01       | pH Unit        | 7.64              | 7.77              | 8.01              | 7.81              | 7.77              |
| EA010P: Conductivity by PC Titrator        |               |            |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C             |               | 1          | µS/cm          | 1250              | 835               | 1030              | 2440              | 1890              |
| EK057G: Nitrite as N by Discrete Analyser  |               |            |                |                   |                   |                   |                   |                   |
| Nitrite as N                               |               | 0.01       | mg/L           | <0.01             | <0.01             | <0.01             | 0.06              | <0.01             |
| EK058G: Nitrate as N by Discrete Analyser  |               |            |                |                   |                   |                   |                   |                   |
| Nitrate as N                               | 14797-55-8    | 0.01       | mg/L           | 7.05              | 2.36              | 1.01              | 1.30              | 4.72              |
| EK059G: Nitrite plus Nitrate as N (NOx) by | Discrete Anal | yser       |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                     |               | 0.01       | mg/L           | 7.05              | 2.36              | 1.01              | 1.36              | 4.72              |
| EK061G: Total Kjeldahl Nitrogen By Discret | e Analyser    |            |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N               |               | 0.1        | mg/L           | 2.5               | 1.3               | 0.6               | 5.0               | 1.3               |
| EK062G: Total Nitrogen as N (TKN + NOx) b  | y Discrete An | alyser     |                |                   |                   |                   |                   |                   |
| <sup>^</sup> Total Nitrogen as N           |               | 0.1        | mg/L           | 9.6               | 3.7               | 1.6               | 6.4               | 6.0               |
| EK067G: Total Phosphorus as P by Discrete  | e Analyser    |            |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                      |               | 0.01       | mg/L           | 0.81              | 0.07              | 0.11              | 1.03              | 0.96              |
| EK071G: Reactive Phosphorus as P by disc   | rete analyser |            |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                   | 14265-44-2    | 0.01       | mg/L           | 0.08              | 0.07              | 0.03              | 1.01              | 0.08              |
| EP020: Oil and Grease (O&G)                |               |            |                |                   |                   |                   |                   |                   |
| Oil & Grease                               |               | 5          | mg/L           | <5                | <5                | <5                | <5                | <5                |
| EP080/071: Total Petroleum Hydrocarbons    |               |            |                |                   |                   |                   |                   |                   |
| C10 - C14 Fraction                         |               | 50         | µg/L           | <50               | <50               | <50               | <50               | <50               |
| C15 - C28 Fraction                         |               | 100        | µg/L           | <100              | <100              | <100              | <100              | <100              |
| C29 - C36 Fraction                         |               | 50         | µg/L           | <50               | <50               | <50               | <50               | <50               |



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)       |                | Clie         | ent sample ID  | WER-MW1<br>114749 | WER-MW2<br>114750 | WER-MW4B<br>114751 | WER-MW5<br>114752 | WER-MW6<br>114753 |
|-----------------------------------------|----------------|--------------|----------------|-------------------|-------------------|--------------------|-------------------|-------------------|
|                                         | Ci             | lient sampli | ng date / time | 24-SEP-2013 13:50 | 24-SEP-2013 13:15 | 24-SEP-2013 11:05  | 24-SEP-2013 10:45 | 24-SEP-2013 12:45 |
| Compound                                | CAS Number     | LOR          | Unit           | ES1321110-001     | ES1321110-002     | ES1321110-003      | ES1321110-004     | ES1321110-005     |
| EP080/071: Total Petroleum Hydrocarbon  | is - Continued |              |                |                   |                   |                    |                   |                   |
| <sup>^</sup> C10 - C36 Fraction (sum)   |                | 50           | µg/L           | <50               | <50               | <50                | <50               | <50               |
| EP080/071: Total Recoverable Hydrocarb  | ons - NEPM 201 | 3            |                |                   |                   |                    |                   |                   |
| >C10 - C16 Fraction                     | >C10_C16       | 100          | µg/L           | <100              | <100              | <100               | <100              | <100              |
| >C16 - C34 Fraction                     |                | 100          | µg/L           | <100              | <100              | <100               | <100              | <100              |
| >C34 - C40 Fraction                     |                | 100          | µg/L           | <100              | <100              | <100               | <100              | <100              |
| ^ >C10 - C40 Fraction (sum)             |                | 100          | µg/L           | <100              | <100              | <100               | <100              | <100              |
| ^ >C10 - C16 Fraction minus Naphthalene |                | 100          | µg/L           | <100              | <100              | <100               | <100              | <100              |
| (F2)                                    |                |              |                |                   |                   |                    |                   |                   |

### Analytical Results

### **Descriptive Results**

| Sub-Matrix: WATER        |                                                |                    |
|--------------------------|------------------------------------------------|--------------------|
| Method: Compound         | Client sample ID - Client sampling date / time | Analytical Results |
| AC04: Field Observations |                                                |                    |
| AC04: Appearance         | WER-MW1114749 - 24-SEP-2013 13:50              | Clear              |
| AC04: Appearance         | WER-MW2114750 - 24-SEP-2013 13:15              | Clear              |
| AC04: Appearance         | WER-MW4B114751 - 24-SEP-2013 11:05             | Clear              |
| AC04: Appearance         | WER-MW5114752 - 24-SEP-2013 10:45              | Clear              |
| AC04: Appearance         | WER-MW6114753 - 24-SEP-2013 12:45              | Slight Turbid      |
| AC04: Odour              | WER-MW1114749 - 24-SEP-2013 13:50              | Nil                |
| AC04: Odour              | WER-MW2114750 - 24-SEP-2013 13:15              | Nil                |
| AC04: Odour              | WER-MW4B114751 - 24-SEP-2013 11:05             | Nil                |
| AC04: Odour              | WER-MW5114752 - 24-SEP-2013 10:45              | Nil                |
| AC04: Odour              | WER-MW6114753 - 24-SEP-2013 12:45              | Nil                |
| AC04: Colour             | WER-MW1114749 - 24-SEP-2013 13:50              | Clear              |
| AC04: Colour             | WER-MW2114750 - 24-SEP-2013 13:15              | Clear              |
| AC04: Colour             | WER-MW4B114751 - 24-SEP-2013 11:05             | Clear              |
| AC04: Colour             | WER-MW5114752 - 24-SEP-2013 10:45              | Clear              |
| AC04. Colour             | WER-MW6114753 - 24-SEP-2013 12:45              | Sandy              |



|              | CE                          | <b>RTIFICATE OF ANALYSIS</b> |                                                       |
|--------------|-----------------------------|------------------------------|-------------------------------------------------------|
| Work Order   | ES1321205                   | Page                         | : 1 of 4                                              |
| Client       |                             | Laboratory                   | : Environmental Division Sydney                       |
| Contact      | : LYNN DUNN                 | Contact                      | : Client Services                                     |
| Address      | : 5-7                       | Address                      | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | TALBOT RD                   |                              |                                                       |
|              | GUNNEDAH NSW 2380           |                              |                                                       |
| E-mail       | : lynn.dunn@alsglobal.com   | E-mail                       | : sydney@alsglobal.com                                |
| Telephone    | : 02 6742 0058              | Telephone                    | : +61-2-8784 8555                                     |
| Facsimile    | : 02 6742 0068              | Facsimile                    | : +61-2-8784 8500                                     |
| Project      | : WCC 6 MONTHLY GROUNDWATER | QC Level                     | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |
| Order number | : 6600                      |                              |                                                       |
| C-O-C number | :                           | Date Samples Received        | : 26-SEP-2013                                         |
| Sampler      | : BP                        | Issue Date                   | : 03-OCT-2013                                         |
| Site         | :                           |                              |                                                       |
|              |                             | No. of samples received      | :1                                                    |
| Quote number | : SY/417/13                 | No. of samples analysed      | : 1                                                   |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

Accredited for compliance with

ISO/IEC 17025.

- General Comments
- Analytical Results
- Descriptive Results



| NATA Accredited Laboratory 825 | Signatories |
|--------------------------------|-------------|
|                                | 0           |

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position             | Accreditation Category |
|----------------|----------------------|------------------------|
| Ankit Joshi    | Inorganic Chemist    | Sydney Inorganics      |
| Edwandy Fadjar | Organic Coordinator  | Sydney Organics        |
| Kim Phan       | Sample Receipt Clerk | ACIRL Sampling         |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting ^ = This result is computed from individual analyte detections at or above the level of reporting

- AC01: Bore data supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC02: Sampling data supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC04: Field observations supplied by ALS ACIRL.



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            | Client sample ID |             | WER-MW3<br>114754 |                   |  |  |  |  |  |  |
|----------------------------------------------|------------------|-------------|-------------------|-------------------|--|--|--|--|--|--|
|                                              | Cli              | ient sampli | ing date / time   | 25-SEP-2013 14:10 |  |  |  |  |  |  |
| Compound                                     | CAS Number       | LOR         | Unit              | ES1321205-001     |  |  |  |  |  |  |
| AC01: Bore Data                              |                  |             |                   |                   |  |  |  |  |  |  |
| Standing Water Level                         |                  | 0.01        | m                 | 15.3              |  |  |  |  |  |  |
| Stick up                                     |                  | 0.01        | m                 | 0.95              |  |  |  |  |  |  |
| AC02: Sampling Data                          |                  |             |                   |                   |  |  |  |  |  |  |
| Purge Type                                   |                  | -           |                   | Pump              |  |  |  |  |  |  |
| Purge Volume                                 |                  | 0.01        | L                 | 160               |  |  |  |  |  |  |
| AC03: Field Tests                            |                  |             |                   |                   |  |  |  |  |  |  |
| Electrical Conductivity (Non<br>Compensated) |                  | 1           | µS/cm             | 3080              |  |  |  |  |  |  |
| рН                                           |                  | 0.01        | pH Unit           | 6.74              |  |  |  |  |  |  |
| Temperature                                  |                  | 0.1         | °C                | 23.0              |  |  |  |  |  |  |
| EA005P: pH by PC Titrator                    |                  |             |                   |                   |  |  |  |  |  |  |
| pH Value                                     |                  | 0.01        | pH Unit           | 7.45              |  |  |  |  |  |  |
| EA010P: Conductivity by PC Titrator          |                  |             |                   |                   |  |  |  |  |  |  |
| Electrical Conductivity @ 25°C               |                  | 1           | µS/cm             | 3320              |  |  |  |  |  |  |
| EK057G: Nitrite as N by Discrete Analyser    |                  |             |                   |                   |  |  |  |  |  |  |
| Nitrite as N                                 |                  | 0.01        | mg/L              | <0.01             |  |  |  |  |  |  |
| EK058G: Nitrate as N by Discrete Analyse     | r                |             |                   |                   |  |  |  |  |  |  |
| Nitrate as N                                 | 14797-55-8       | 0.01        | mg/L              | 20.4              |  |  |  |  |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by   | y Discrete Ana   | lyser       |                   |                   |  |  |  |  |  |  |
| Nitrite + Nitrate as N                       |                  | 0.01        | mg/L              | 20.4              |  |  |  |  |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discre    | ete Analyser     |             |                   |                   |  |  |  |  |  |  |
| Total Kjeldahl Nitrogen as N                 |                  | 0.1         | mg/L              | 4.4               |  |  |  |  |  |  |
| EK062G: Total Nitrogen as N (TKN + NOx)      | by Discrete An   | alyser      |                   |                   |  |  |  |  |  |  |
| <sup>^</sup> Total Nitrogen as N             |                  | 0.1         | mg/L              | 24.8              |  |  |  |  |  |  |
| EK067G: Total Phosphorus as P by Discre      | te Analyser      |             |                   |                   |  |  |  |  |  |  |
| Total Phosphorus as P                        |                  | 0.01        | mg/L              | <0.01             |  |  |  |  |  |  |
| EK071G: Reactive Phosphorus as P by dis      | crete analyser   |             |                   |                   |  |  |  |  |  |  |
| Reactive Phosphorus as P                     | 14265-44-2       | 0.01        | mg/L              | <0.01             |  |  |  |  |  |  |
| EP020: Oil and Grease (O&G)                  |                  |             |                   |                   |  |  |  |  |  |  |
| Oil & Grease                                 |                  | 5           | mg/L              | <5                |  |  |  |  |  |  |
| EP080/071: Total Petroleum Hydrocarbons      |                  |             |                   |                   |  |  |  |  |  |  |
| C10 - C14 Fraction                           |                  | 50          | µg/L              | <50               |  |  |  |  |  |  |
| C15 - C28 Fraction                           |                  | 100         | µg/L              | <100              |  |  |  |  |  |  |



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)                   | x: WATER) Client sample ID |             | WER-MW3        |                   |  |  |  |  |
|-----------------------------------------------------|----------------------------|-------------|----------------|-------------------|--|--|--|--|
|                                                     |                            |             |                | 114754            |  |  |  |  |
|                                                     | Cli                        | ient sampli | ng date / time | 25-SEP-2013 14:10 |  |  |  |  |
| Compound CAS                                        | Number                     | LOR         | Unit           | ES1321205-001     |  |  |  |  |
| EP080/071: Total Petroleum Hydrocarbons - Continued |                            |             |                |                   |  |  |  |  |
| C29 - C36 Fraction                                  |                            | 50          | µg/L           | <50               |  |  |  |  |
| C10 - C36 Fraction (sum)                            |                            | 50          | µg/L           | <50               |  |  |  |  |
| EP080/071: Total Recoverable Hydrocarbons - N       | EPM 201                    | 3           |                |                   |  |  |  |  |
| >C10 - C16 Fraction >C                              | 10_C16                     | 100         | µg/L           | <100              |  |  |  |  |
| >C16 - C34 Fraction                                 |                            | 100         | µg/L           | <100              |  |  |  |  |
| >C34 - C40 Fraction                                 |                            | 100         | µg/L           | <100              |  |  |  |  |
| >C10 - C40 Fraction (sum)                           |                            | 100         | µg/L           | <100              |  |  |  |  |

## Analytical Results

### Descriptive Results

### Sub-Matrix: WATER

| Method: Compound         | Client sample ID - Client sampling date / time | Analytical Results |
|--------------------------|------------------------------------------------|--------------------|
| AC04: Field Observations |                                                |                    |
| AC04: Appearance         | WER-MW3114754 - 25-SEP-2013 14:10              | Clear              |
| AC04: Odour              | WER-MW3114754 - 25-SEP-2013 14:10              | Nil                |
| AC04: Colour             | WER-MW3114754 - 25-SEP-2013 14:10              | Clear              |

# Appendix 7 – Surface Water Monitoring Results





**Environmental Division** 

| CERTIFICATE OF ANALYSIS |                                 |                         |                                                       |  |  |  |  |  |
|-------------------------|---------------------------------|-------------------------|-------------------------------------------------------|--|--|--|--|--|
| Work Order              | ES1319047                       | Page                    | : 1 of 7                                              |  |  |  |  |  |
| Client                  |                                 | Laboratory              | : Environmental Division Sydney                       |  |  |  |  |  |
| Contact                 | : A WRIGHT                      | Contact                 | : Client Services                                     |  |  |  |  |  |
| Address                 | : 5-7                           | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |  |  |  |  |  |
|                         | TALBOT RD                       |                         |                                                       |  |  |  |  |  |
|                         | GUNNEDAH NSW 2380               |                         |                                                       |  |  |  |  |  |
| E-mail                  | : awright@whitehavencoal.com.au | E-mail                  | : sydney@alsglobal.com                                |  |  |  |  |  |
| Telephone               | : 02 6742 0058                  | Telephone               | : +61-2-8784 8555                                     |  |  |  |  |  |
| Facsimile               | : 02 6742 0068                  | Facsimile               | : +61-2-8784 8500                                     |  |  |  |  |  |
| Project                 | : WCC QUARTERLY SURFACE WATER   | QC Level                | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |  |  |  |  |  |
| Order number            | : 6468                          |                         |                                                       |  |  |  |  |  |
| C-O-C number            | :                               | Date Samples Received   | : 28-AUG-2013                                         |  |  |  |  |  |
| Sampler                 | : BP                            | Issue Date              | : 02-SEP-2013                                         |  |  |  |  |  |
| Site                    | :                               |                         |                                                       |  |  |  |  |  |
|                         |                                 | No. of samples received | : 11                                                  |  |  |  |  |  |
| Quote number            | : SY/417/13                     | No. of samples analysed | : 11                                                  |  |  |  |  |  |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

|                                | Ankit Joshi                                                 | Inorganic Chemist                    | Sydney Inorganics                            |
|--------------------------------|-------------------------------------------------------------|--------------------------------------|----------------------------------------------|
| ISO/IEC 17025.                 | Signatories                                                 | Position                             | Accreditation Category                       |
| Accredited for compliance with | carried out in compliance with procedures sp                | ecified in 21 CFR Part 11.           |                                              |
| NATA Accredited Laboratory 825 | <i>Signatories</i><br>This document has been electronically | signed by the authorized signatories | indicated below. Electronic signing has been |

WORLD RECOGNISED

NATA

| Signatories | Position                 | Accreditation Category |
|-------------|--------------------------|------------------------|
| Ankit Joshi | Inorganic Chemist        | Sydney Inorganics      |
| Hoa Nguyen  | Senior Inorganic Chemist | Sydney Inorganics      |
| Kim Phan    | Sample Receipt Clerk     | ACIRL Sampling         |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company





#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

- AC03: Field tests supplied by ALS ACIRL. NATA Accreditation No.15784.
- AC04: Field observations supplied by ALS ACIRL.
- EK071G: It has been noted that Reactive P is greater than Total P for sample ID( WER-QUIPOLLY CREEK UPSTREAM ()), however this difference is within the limits of experimental variation.
- EK071G: It has been noted that Reactive P is greater than Total P for sample ID( WER-SEDIMENT DETENTION 5()), however this difference is within the limits of experimental variation.



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)         |                 | Cli        | ent sample ID  | WER-SEDIMENT BASIN<br>2() | WER-SEDIMENT BASIN<br>9() | WER-SEDIMENT<br>DETENTION 4() | WER-SEDIMENT      | WER-VOID WATER<br>DAM 2(VWD2-FORM |
|-------------------------------------------|-----------------|------------|----------------|---------------------------|---------------------------|-------------------------------|-------------------|-----------------------------------|
|                                           |                 |            |                | 113348                    | 113349                    | 113350                        | 113351            | 113352                            |
|                                           | Cli             | ent sampli | ng date / time | 27-AUG-2013 12:10         | 27-AUG-2013 11:05         | 27-AUG-2013 12:50             | 27-AUG-2013 12:30 | 27-AUG-2013 10:45                 |
| Compound                                  | CAS Number      | LOR        | Unit           | ES1319047-001             | ES1319047-002             | ES1319047-003                 | ES1319047-004     | ES1319047-005                     |
| AC03: Field Tests                         |                 |            |                |                           |                           |                               |                   |                                   |
| Electrical Conductivity (Non              |                 | 1          | µS/cm          | 987                       | 208                       | 238                           | 280               | 936                               |
| Compensated)                              |                 |            |                |                           |                           |                               |                   |                                   |
| pH                                        |                 | 0.01       | pH Unit        | 8.86                      | 8.58                      | 9.14                          | 8.46              | 8.64                              |
| Temperature                               |                 | 0.1        | °C             | 15.6                      | 17.5                      | 16.9                          | 15.6              | 16.5                              |
| EA005P: pH by PC Titrator                 |                 |            |                |                           |                           |                               |                   |                                   |
| pH Value                                  |                 | 0.01       | pH Unit        | 8.37                      | 8.10                      | 9.23                          | 8.18              | 8.44                              |
| EA010P: Conductivity by PC Titrator       |                 |            |                |                           |                           |                               |                   |                                   |
| Electrical Conductivity @ 25°C            |                 | 1          | µS/cm          | 1010                      | 208                       | 240                           | 273               | 963                               |
| EA025: Suspended Solids                   |                 |            |                |                           |                           |                               |                   |                                   |
| Suspended Solids (SS)                     |                 | 5          | mg/L           | 7                         | 8                         | 20                            | 5                 | 12                                |
| EK057G: Nitrite as N by Discrete Analyse  | r               |            |                |                           |                           |                               |                   |                                   |
| Nitrite as N                              |                 | 0.01       | mg/L           | <0.01                     | <0.01                     | <0.01                         | <0.01             | <0.01                             |
| EK058G: Nitrate as N by Discrete Analyse  | r               |            |                |                           |                           |                               |                   |                                   |
| Nitrate as N                              | 14797-55-8      | 0.01       | mg/L           | 0.01                      | 0.70                      | 0.01                          | 0.18              | 0.74                              |
| EK059G: Nitrite plus Nitrate as N (NOx) b | y Discrete Anal | yser       |                |                           |                           |                               |                   |                                   |
| Nitrite + Nitrate as N                    |                 | 0.01       | mg/L           | 0.01                      | 0.70                      | 0.01                          | 0.18              | 0.74                              |
| EK061G: Total Kjeldahl Nitrogen By Discre | ete Analyser    |            |                |                           |                           |                               |                   |                                   |
| Total Kjeldahl Nitrogen as N              |                 | 0.1        | mg/L           | 0.6                       | 0.7                       | 0.9                           | 1.2               | 0.6                               |
| EK062G: Total Nitrogen as N (TKN + NOx)   | by Discrete An  | alyser     |                |                           |                           |                               |                   |                                   |
| <sup>^</sup> Total Nitrogen as N          |                 | 0.1        | mg/L           | 0.6                       | 1.4                       | 0.9                           | 1.4               | 1.3                               |
| EK067G: Total Phosphorus as P by Discre   | te Analyser     |            |                |                           |                           |                               |                   |                                   |
| Total Phosphorus as P                     |                 | 0.01       | mg/L           | 0.02                      | 0.05                      | 0.21                          | 0.62              | 0.06                              |
| EK071G: Reactive Phosphorus as P by dis   | crete analyser  |            |                |                           |                           |                               |                   |                                   |
| Reactive Phosphorus as P                  | 14265-44-2      | 0.01       | mg/L           | <0.01                     | <0.01                     | 0.18                          | 0.63              | <0.01                             |
| EP020: Oil and Grease (O&G)               |                 |            |                |                           |                           |                               |                   |                                   |
| Oil & Grease                              |                 | 5          | mg/L           | <5                        | <5                        |                               | <5                | <5                                |
| Oil & Grease                              |                 | 5          | mg/L           |                           |                           | <5                            |                   |                                   |



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)                   |            | Client sample ID  | WER-WADWELLS<br>LAND CAUSEWAY (BL<br>113353 | WER-QUIPOLLY<br>CREEK UPSTREAM ()<br>113354 | WER-QUIPOLLY<br>CREEK UPSTREAM ()<br>113355 | WER-WERRIS CREEK<br>UPSTREAM ()<br>113356 | WER-VOID WATER<br>DAM 3 (VW3-200M<br>113357 |
|-----------------------------------------------------|------------|-------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------------|
|                                                     | Client san | pling date / time | 27-AUG-2013 10:10                           | 27-AUG-2013 09:35                           | 27-AUG-2013 09:55                           | 27-AUG-2013 09:00                         | 27-AUG-2013 11:25                           |
| Compound CAS Num                                    | er LOR     | Unit              | ES1319047-006                               | ES1319047-007                               | ES1319047-008                               | ES1319047-009                             | ES1319047-010                               |
| AC03: Field Tests                                   |            |                   |                                             |                                             |                                             |                                           |                                             |
| Electrical Conductivity (Non                        | 1          | μS/cm             | 610                                         | 469                                         | 803                                         | 1240                                      | 1020                                        |
| Compensated)                                        |            |                   |                                             |                                             |                                             |                                           |                                             |
| рН                                                  | 0.01       | pH Unit           | 8.15                                        | 7.78                                        | 7.97                                        | 8.56                                      | 8.79                                        |
| Temperature                                         | 0.1        | °C                | 15.4                                        | 12.2                                        | 14.0                                        | 12.4                                      | 17.4                                        |
| EA005P: pH by PC Titrator                           |            |                   |                                             |                                             |                                             |                                           |                                             |
| pH Value                                            | 0.01       | pH Unit           | 8.00                                        | 7.90                                        | 8.05                                        | 8.43                                      | 8.46                                        |
| EA010P: Conductivity by PC Titrator                 |            |                   |                                             |                                             |                                             |                                           |                                             |
| Electrical Conductivity @ 25°C                      | 1          | μS/cm             | 636                                         | 470                                         | 826                                         | 1270                                      | 1080                                        |
| EA025: Suspended Solids                             |            |                   |                                             |                                             |                                             |                                           |                                             |
| Suspended Solids (SS)                               | 5          | mg/L              | 65                                          | 25                                          | 11                                          | 15                                        | 19                                          |
| EK057G: Nitrite as N by Discrete Analyser           |            |                   |                                             |                                             |                                             |                                           |                                             |
| Nitrite as N                                        | 0.01       | mg/L              | 0.01                                        | <0.01                                       | <0.01                                       | <0.01                                     | 0.04                                        |
| EK058G: Nitrate as N by Discrete Analyser           |            |                   |                                             |                                             |                                             |                                           |                                             |
| Nitrate as N 14797-5                                | 6-8 0.01   | mg/L              | 0.03                                        | 0.22                                        | 0.03                                        | <0.01                                     | 3.55                                        |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete | Analyser   |                   |                                             |                                             |                                             |                                           |                                             |
| Nitrite + Nitrate as N                              | 0.01       | mg/L              | 0.04                                        | 0.22                                        | 0.03                                        | <0.01                                     | 3.59                                        |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyse | r          |                   |                                             |                                             |                                             |                                           |                                             |
| Total Kjeldahl Nitrogen as N                        | 0.1        | mg/L              | 5.6                                         | 0.5                                         | 0.1                                         | 0.3                                       | 1.6                                         |
| EK062G: Total Nitrogen as N (TKN + NOx) by Discret  | Analyser   |                   |                                             |                                             |                                             |                                           |                                             |
| ↑ Total Nitrogen as N                               | 0.1        | mg/L              | 5.6                                         | 0.7                                         | 0.1                                         | 0.3                                       | 5.2                                         |
| EK067G: Total Phosphorus as P by Discrete Analyse   |            |                   |                                             |                                             |                                             |                                           |                                             |
| Total Phosphorus as P                               | 0.01       | mg/L              | 0.49                                        | 0.05                                        | 0.04                                        | 0.07                                      | 0.08                                        |
| EK071G: Reactive Phosphorus as P by discrete anal   | ser        |                   |                                             |                                             |                                             |                                           |                                             |
| Reactive Phosphorus as P 14265-4                    | -2 0.01    | mg/L              | 0.26                                        | <0.01                                       | 0.05                                        | 0.04                                      | <0.01                                       |
| EP020: Oil and Grease (O&G)                         |            |                   |                                             |                                             |                                             |                                           |                                             |
| Oil & Grease                                        | 5          | mg/L              |                                             | <5                                          | <5                                          | <5                                        | <5                                          |
| Oil & Grease                                        | 5          | mg/L              | <5                                          |                                             |                                             |                                           |                                             |


## Analytical Results

| Sub-Matrix: WATER (Matrix: WATER) Client sample              |                                     | ent sample ID | WER-VOID WATER<br>DAM 4 (VWD4-200<br>113358 |                   |  |  |  |  |  |
|--------------------------------------------------------------|-------------------------------------|---------------|---------------------------------------------|-------------------|--|--|--|--|--|
| Client sampling date / time                                  |                                     |               |                                             | 27-AUG-2013 11:50 |  |  |  |  |  |
| Compound CAS                                                 | Number                              | LOR           | Unit                                        | ES1319047-011     |  |  |  |  |  |
| AC03: Field Tests                                            |                                     |               |                                             |                   |  |  |  |  |  |
| Electrical Conductivity (Non<br>Compensated)                 |                                     | 1             | µS/cm                                       | 934               |  |  |  |  |  |
| рН                                                           |                                     | 0.01          | pH Unit                                     | 8.97              |  |  |  |  |  |
| Temperature                                                  |                                     | 0.1           | °C                                          | 16.5              |  |  |  |  |  |
| EA005P: pH by PC Titrator                                    |                                     |               |                                             |                   |  |  |  |  |  |
| pH Value                                                     |                                     | 0.01          | pH Unit                                     | 8.60              |  |  |  |  |  |
| EA010P: Conductivity by PC Titrator                          | EA010P: Conductivity by PC Titrator |               |                                             |                   |  |  |  |  |  |
| Electrical Conductivity @ 25°C                               |                                     | 1             | µS/cm                                       | 992               |  |  |  |  |  |
| EA025: Suspended Solids                                      |                                     |               |                                             |                   |  |  |  |  |  |
| Suspended Solids (SS)                                        |                                     | 5             | mg/L                                        | 36                |  |  |  |  |  |
| EK057G: Nitrite as N by Discrete Analyser                    |                                     |               |                                             |                   |  |  |  |  |  |
| Nitrite as N                                                 |                                     | 0.01          | mg/L                                        | <0.01             |  |  |  |  |  |
| EK058G: Nitrate as N by Discrete Analyser                    |                                     |               |                                             |                   |  |  |  |  |  |
| Nitrate as N 14                                              | 797-55-8                            | 0.01          | mg/L                                        | 0.22              |  |  |  |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Disc              | rete Ana                            | lyser         |                                             |                   |  |  |  |  |  |
| Nitrite + Nitrate as N                                       |                                     | 0.01          | mg/L                                        | 0.22              |  |  |  |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete An               | alyser                              |               |                                             |                   |  |  |  |  |  |
| Total Kjeldahl Nitrogen as N                                 |                                     | 0.1           | mg/L                                        | 0.6               |  |  |  |  |  |
| EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser |                                     |               |                                             |                   |  |  |  |  |  |
| <sup>^</sup> Total Nitrogen as N                             |                                     | 0.1           | mg/L                                        | 0.8               |  |  |  |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser           |                                     |               |                                             |                   |  |  |  |  |  |
| Total Phosphorus as P                                        |                                     | 0.01          | mg/L                                        | 0.02              |  |  |  |  |  |
| EK071G: Reactive Phosphorus as P by discrete analyser        |                                     |               |                                             |                   |  |  |  |  |  |
| Reactive Phosphorus as P 142                                 | 265-44-2                            | 0.01          | mg/L                                        | <0.01             |  |  |  |  |  |
| EP020: Oil and Grease (O&G)                                  |                                     |               |                                             |                   |  |  |  |  |  |
| Oil & Grease                                                 |                                     | 5             | mg/L                                        | <5                |  |  |  |  |  |



## Analytical Results

**Descriptive Results** 

Sub-Matrix: WATER

| Method: Compound         | Client sample ID - Client sampling date / time              | Analytical Results |
|--------------------------|-------------------------------------------------------------|--------------------|
| AC04: Field Observations |                                                             |                    |
| AC04: Appearance         | WER-SEDIMENT BASIN 2()113348 - 27-AUG-2013<br>12:10         | Clear              |
| AC04: Appearance         | WER-SEDIMENT BASIN 9()113349 - 27-AUG-2013<br>11:05         | Slight Turbid      |
| AC04: Appearance         | WER-SEDIMENT DETENTION 4()113350 -<br>27-AUG-2013 12:50     | Clear              |
| AC04: Appearance         | WER-SEDIMENT DETENTION 5()113351 -<br>27-AUG-2013 12:30     | Clear              |
| AC04: Appearance         | WER-VOID WATER DAM 2(VWD2-FORM113352 - 27-AUG-2013 10:45    | Clear              |
| AC04: Appearance         | WER-WADWELLS LAND CAUSEWAY (BL113353<br>- 27-AUG-2013 10:10 | Slight Turbid      |
| AC04: Appearance         | WER-QUIPOLLY CREEK UPSTREAM ()113354 -<br>27-AUG-2013 09:35 | Clear              |
| AC04: Appearance         | WER-QUIPOLLY CREEK UPSTREAM ()113355 -<br>27-AUG-2013 09:55 | Clear              |
| AC04: Appearance         | WER-WERRIS CREEK UPSTREAM ()113356 -<br>27-AUG-2013 09:00   | Clear              |
| AC04: Appearance         | WER-VOID WATER DAM 3 (VW3-200M113357 -<br>27-AUG-2013 11:25 | Clear              |
| AC04: Appearance         | WER-VOID WATER DAM 4 (VWD4-200113358 -<br>27-AUG-2013 11:50 | Clear              |
| AC04: Odour              | WER-SEDIMENT BASIN 2()113348 - 27-AUG-2013<br>12:10         | Nil                |
| AC04: Odour              | WER-SEDIMENT BASIN 9()113349 - 27-AUG-2013<br>11:05         | Nil                |
| AC04: Odour              | WER-SEDIMENT DETENTION 4()113350 -<br>27-AUG-2013 12:50     | Nil                |
| AC04: Odour              | WER-SEDIMENT DETENTION 5()113351 -<br>27-AUG-2013 12:30     | Nil                |
| AC04: Odour              | WER-VOID WATER DAM 2(VWD2-FORM113352 -<br>27-AUG-2013 10:45 | Nil                |
| AC04: Odour              | WER-WADWELLS LAND CAUSEWAY (BL113353<br>- 27-AUG-2013 10:10 | Nil                |
| AC04: Odour              | WER-QUIPOLLY CREEK UPSTREAM ()113354 -<br>27-AUG-2013 09:35 | Nil                |
| AC04: Odour              | WER-QUIPOLLY CREEK UPSTREAM ()113355 -<br>27-AUG-2013 09:55 | Nil                |



#### Sub-Matrix: WATER

| Method: Compound | Client sample ID - Client sampling date / time | Analytical Results |
|------------------|------------------------------------------------|--------------------|
| AC04: Odour      | WER-WERRIS CREEK UPSTREAM ()113356 -           | Nil                |
|                  | 27-AUG-2013 09:00                              |                    |
| AC04: Odour      | WER-VOID WATER DAM 3 (VW3-200M113357 -         | Nil                |
|                  | 27-AUG-2013 11:25                              |                    |
| AC04: Odour      | WER-VOID WATER DAM 4 (VWD4-200113358 -         | Nil                |
|                  | 27-AUG-2013 11:50                              |                    |
| AC04: Colour     | WER-SEDIMENT BASIN 2()113348 - 27-AUG-2013     | Clear              |
|                  | 12:10                                          |                    |
| AC04: Colour     | WER-SEDIMENT BASIN 9()113349 - 27-AUG-2013     | Brown              |
|                  | 11:05                                          |                    |
| AC04: Colour     | WER-SEDIMENT DETENTION 4()113350 -             | Slight Green       |
|                  | 27-AUG-2013 12:50                              |                    |
| AC04: Colour     | WER-SEDIMENT DETENTION 5()113351 -             | Slight Brown       |
|                  | 27-AUG-2013 12:30                              |                    |
| AC04: Colour     | WER-VOID WATER DAM 2(VWD2-FORM113352 -         | Clear              |
|                  | 27-AUG-2013 10:45                              |                    |
| AC04: Colour     | WER-WADWELLS LAND CAUSEWAY (BL113353           | Muddy Brown        |
|                  | - 27-AUG-2013 10:10                            |                    |
| AC04: Colour     | WER-QUIPOLLY CREEK UPSTREAM ()113354 -         | Clear              |
|                  | 27-AUG-2013 09:35                              |                    |
| AC04: Colour     | WER-QUIPOLLY CREEK UPSTREAM ()113355 -         | Clear              |
|                  | 27-AUG-2013 09:55                              |                    |
| AC04: Colour     | WER-WERRIS CREEK UPSTREAM ()113356 -           | Clear              |
|                  | 27-AUG-2013 09:00                              |                    |
| AC04: Colour     | WER-VOID WATER DAM 3 (VW3-200M113357 -         | Clear              |
|                  | 27-AUG-2013 11:25                              |                    |
| AC04: Colour     | WER-VOID WATER DAM 4 (VWD4-200113358 -         | Clear              |
|                  | 27-AUG-2013 11:50                              |                    |

# Appendix 8 – Discharge Monitoring Results





**Environmental Division** 

| CERTIFICATE OF ANALYSIS |                                 |                         |                                                       |  |  |  |  |
|-------------------------|---------------------------------|-------------------------|-------------------------------------------------------|--|--|--|--|
| Work Order              | ES1317968                       | Page                    | : 1 of 3                                              |  |  |  |  |
| Client                  |                                 | Laboratory              | : Environmental Division Sydney                       |  |  |  |  |
| Contact                 | : A WRIGHT                      | Contact                 | : Client Services                                     |  |  |  |  |
| Address                 | : 5-7                           | Address                 | : 277-289 Woodpark Road Smithfield NSW Australia 2164 |  |  |  |  |
|                         | TALBOT RD                       |                         |                                                       |  |  |  |  |
|                         | GUNNEDAH NSW 2380               |                         |                                                       |  |  |  |  |
| E-mail                  | : awright@whitehavencoal.com.au | E-mail                  | : sydney@alsglobal.com                                |  |  |  |  |
| Telephone               | : 02 6742 0058                  | Telephone               | : +61-2-8784 8555                                     |  |  |  |  |
| Facsimile               | : 02 6742 0068                  | Facsimile               | : +61-2-8784 8500                                     |  |  |  |  |
| Project                 | : WCC DIRTY WATER DISCHARGE     | QC Level                | : NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |  |  |  |  |
| Order number            | : 6392                          |                         |                                                       |  |  |  |  |
| C-O-C number            | :                               | Date Samples Received   | : 13-AUG-2013                                         |  |  |  |  |
| Sampler                 | :                               | Issue Date              | : 19-AUG-2013                                         |  |  |  |  |
| Site                    | :                               |                         |                                                       |  |  |  |  |
|                         |                                 | No. of samples received | : 3                                                   |  |  |  |  |
| Quote number            | : SY/417/13                     | No. of samples analysed | : 3                                                   |  |  |  |  |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

|                                   | NATA Accredited Laboratory 825<br>Accredited for compliance with<br>ISO/IEC 17025. | Signatories<br>This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11. |                                               |                                        |                        |  |  |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------|--|--|--|--|--|--|
| WORLD RECOGNISED<br>ACCREDITATION |                                                                                    | Signatories                                                                                                                                                                                                   | Position                                      | Accreditation Category                 | Accreditation Category |  |  |  |  |  |  |
|                                   |                                                                                    | Ankit Joshi<br>Hoa Nguyen                                                                                                                                                                                     | Inorganic Chemist<br>Senior Inorganic Chemist | Sydney Inorganics<br>Sydney Inorganics |                        |  |  |  |  |  |  |

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company



www.alsglobal.com



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting



## Analytical Results

| Sub-Matrix: WATER (Matrix: WATER) Client sample ID           |         |             | 113136<br>WER-SEDIMENT BASIN | 113137<br>WER-QUIPOLLY  | 113138<br>WER-QUIPOLLY |                   |  |  |  |
|--------------------------------------------------------------|---------|-------------|------------------------------|-------------------------|------------------------|-------------------|--|--|--|
| Olient complian data (time                                   |         |             |                              | 2<br>12 ALIC 2012 00:00 |                        |                   |  |  |  |
|                                                              |         | ient sampli |                              | T2-AUG-2013 09.00       | T2-AUG-2013 09.30      | T2-AUG-2013 09.40 |  |  |  |
| Compound CAS                                                 | Number  | LOR         | Unit                         | ES131/968-001           | ES131/968-002          | ES131/968-003     |  |  |  |
| EA005P: pH by PC Titrator                                    |         |             |                              |                         |                        |                   |  |  |  |
| pH Value                                                     |         | 0.01        | pH Unit                      | 8.44                    | 7.93                   | 8.14              |  |  |  |
| EA010P: Conductivity by PC Titrator                          |         |             |                              |                         |                        |                   |  |  |  |
| Electrical Conductivity @ 25°C                               |         | 1           | µS/cm                        | 1010                    | 467                    | 827               |  |  |  |
| EA025: Suspended Solids                                      |         |             |                              |                         |                        |                   |  |  |  |
| Suspended Solids (SS)                                        |         | 5           | mg/L                         | <5                      | 10                     | 8                 |  |  |  |
| EK057G: Nitrite as N by Discrete Analyser                    |         |             |                              |                         |                        |                   |  |  |  |
| Nitrite as N                                                 |         | 0.01        | mg/L                         | <0.01                   | <0.01                  | <0.01             |  |  |  |
| EK058G: Nitrate as N by Discrete Analyser                    |         |             |                              |                         |                        |                   |  |  |  |
| Nitrate as N 147                                             | 97-55-8 | 0.01        | mg/L                         | 0.08                    | 0.14                   | 0.04              |  |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Disc              | ete Ana | lyser       |                              |                         |                        |                   |  |  |  |
| Nitrite + Nitrate as N                                       |         | 0.01        | mg/L                         | 0.08                    | 0.14                   | 0.04              |  |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete An               | lvser   |             |                              |                         |                        |                   |  |  |  |
| Total Kjeldahl Nitrogen as N                                 |         | 0.1         | mg/L                         | 0.5                     | 0.2                    | 0.2               |  |  |  |
| EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser |         |             |                              |                         |                        |                   |  |  |  |
| <sup>^</sup> Total Nitrogen as N                             |         | 0.1         | mg/L                         | 0.6                     | 0.3                    | 0.2               |  |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser           |         |             |                              |                         |                        |                   |  |  |  |
| Total Phosphorus as P                                        |         | 0.01        | mg/L                         | 0.02                    | 0.02                   | 0.06              |  |  |  |
| EK071G: Reactive Phosphorus as P by discrete analyser        |         |             |                              |                         |                        |                   |  |  |  |
| Reactive Phosphorus as P 142                                 | 65-44-2 | 0.01        | mg/L                         | <0.01                   | <0.01                  | 0.04              |  |  |  |
| EP020: Oil and Grease (O&G)                                  |         |             |                              |                         |                        |                   |  |  |  |
| Oil & Grease                                                 |         | 5           | mg/L                         | <5                      | <5                     | <5                |  |  |  |